Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Venerdì, 02 Agosto 2013 12:00

Marie Curie, il primo Nobel di nome donna

TRAMA:
Marya Sklodowki nasce il 7 novembre 1867 a Varsavia. Comincia presto a lavorare, prendendosi cura dei bambini delle famiglie ricche e, a partire dal 1885, mantiene la sorella Bronya, che studia medicina a Parigi: il patto è che, una volta laureata, la sorella manterrà lei durante i suoi studi. Il periodo più lungo, quattro anni, lo trascorre presso la famiglia Zorawski: qui conosce Casimir, il figlio dei padroni, che studia a Varsavia. Si innamorano e vorrebbero sposarsi, ma i genitori di lui si oppongono. Per Marya è un duro colpo. 
Grazie a un lavoro più remunerativo del padre, Marya può cominciare a risparmiare per se stessa e nell’autunno del 1891 raggiunge la sorella: si iscrive alla Sorbona il 3 novembre e francesizza il suo nome in Marie. In due anni di sforzi intensi, isolamento e privazioni si laurea in scienze fisiche ed è la prima del suo corso. Torna a Varsavia per perfezionare lo studio della matematica e si laurea nel luglio del 1894. 
Rientra a Parigi per lavorare nel laboratorio della Sorbona e si sposa con Pierre nel luglio del 1895. Il 12 settembre del 1897 nasce la loro prima figlia, Irène. 
Marie ha trent’anni quando comincia ad esporsi alla radioattività: la strada esplorata da Henri Becquerel, dopo la scoperta dei raggi X nel 1895 da parte di Röntgen, offre a Marie un campo di ricerca fecondo e poco esplorato, in vista del suo progetto di diventare dottore in scienze. Redige la sua prima relazione il 12 aprile 1898 per l’Accademia delle scienze, ma i fisici restano indifferenti. Quando Marie confida al marito di poter ipotizzare l’esistenza di un nuovo elemento, Pierre interrompe i suoi lavori per aiutarla. Il 18 luglio 1898 i coniugi Curie dichiarano di aver trovato un nuovo elemento, il polonio e il 26 dicembre un ulteriore nuovo elemento, il radio, viene nominato in una nota all’Accademia delle scienze firmata dai coniugi Curie e da Georges Bémont. Per ottenere pochi milligrammi di radio puro e stabilirne il peso atomico, è necessario lavorare la pechblenda e i due coniugi lavorano instancabilmente, mentre i primi riconoscimenti cominciano ad arrivare dall’estero. Entrambi presentano alcuni problemi di salute dovuti all’esposizione alla radioattività, ma non sono ancora consapevoli della pericolosità del loro lavoro. Nel frattempo, Pierre ottiene il posto di insegnante alla Sorbona e Marie è incaricata delle lezioni di fisica del primo e secondo anno alla Scuola Normale superiore femminile di Sévres. 
Due ricercatori tedeschi annunciano che le sostanze radioattive hanno conseguenze fisiologiche e Pierre, esponendosi a una sorgente di radio, vede formarsi una lesione sul braccio. Anche Becquerel si è ustionato, ma nota che una protezione di piombo rende il radio inoffensivo. È proprio in seguito al suo lavoro con la radioattività che Marie dà alla luce un bambino prematuro, che muore qualche ora dopo la nascita. Nessuno però capisce allora la causa della disgrazia. Nel 1904 Marie ha un’altra bambina Ève, nata sana grazie al fatto che la notorietà del Nobel la tiene lontana dalla radioattività.
Il 28 marzo 1902 Marie può annotare il peso di un atomo di radio: 225,93. Alcuni giorni dopo, non si parla d’altro che del radio che guarisce il cancro. 
Nel 1903 Pierre, Marie e Becquerel vengono insigniti del premio Nobel per la fisica. 
Nell’aprile del 1906, Pierre muore calpestato dalle ruote di una pesante carrozza. Marie si chiude in se stessa. Il 13 maggio successivo, le viene assegnata la cattedra di fisica generale di Pierre. 
Lord Kelvin dichiara che il radio non è un elemento e distrugge, con le sue ipotesi, la teoria dei Curie: per Marie è lo stimolo per tornare a studiare e in un laboratorio completamente organizzato, grazie ai finanziamenti di un americano, forma una nuova generazione di ricercatori e lavora contro l’ipotesi di Kelvin, fino ad un nuovo risultato, quattro anni dopo. 
Alla fine del 1911, Marie ottiene un altro premio Nobel, per la chimica. Nei mesi precedenti, però, uno scandalo ha infangato il suo nome: è stata resa pubblica la sua relazione con Paul Langevin, un fisico con il quale lavora da anni. I coniugi Borel, i coniugi Perrin e Debierne intraprendono una campagna di riabilitazione. Grazie al premio Nobel, il suo prestigio scientifico è al culmine, ma ci vuole parecchio tempo per risolvere i problemi di salute insorti nel frattempo.
Durante la prima guerra mondiale, Marie partecipa attivamente: il primo novembre del 1914 la prima vettura radiologica, con a bordo Marie e Irène, prende la via del fronte. Le vetture vengono battezzate “le piccole Curie” e riusciranno a salvare, effettuando migliaia di radiografie, la vita di molti soldati. Anche il radio contribuisce a salvare soldati: il radon, ottenuto dal decadimento del radio, viene utilizzato per cicatrizzare alcune ferite.
All’inizio degli anni Venti, la scienza francese non gode di grandi privilegi: nel suo laboratorio Marie non ha nemmeno una macchina per scrivere. L’intervento di Meloney Mattingley, redattrice capo di un periodico femminile americano, la aiuterà a raccogliere fondi in America per acquistare un grammo di radio.
Il suo fisico è fortemente minato dalla radioattività e una forte febbre, sintomo di un’anemia perniciosa fulminante, la porterà alla morte il 4 luglio del 1934.
 
COMMENTO:
La straordinaria vita di Marie Curie… Purtroppo non ho avuto la possibilità di leggere l’edizione integrale di Françoise Giroud, mi sono dovuta accontentare di uno dei condensati di Selezione, ma sono riuscita comunque a cogliere la forza e la grandezza di questa incredibile scienziata. Ne ho colta anche l’umanità nelle lettere citate e mi sono commossa leggendo il suo dolore per la morte di Pierre. L’impegno per lo studio, l’amore per la sua famiglia di origine e per le figlie, la sofferenza per la Polonia occupata, il lavoro durante la guerra… una donna straordinaria. 
Ogni donna che si occupa di scienza dovrebbe conoscere la vita della prima donna insignita del premio Nobel per la fisica.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 21:24

Galileo Galilei

TRAMA:

Galileo Galilei nasce il 15 febbraio del 1564.

Nonostante i tentativi del padre di avviarlo ad una carriera redditizia, l’incontro con Euclide – grazie ad Ostilio Ricci – lo porterà a scegliere una strada diversa:per Galileo la matematica non è gioco di cose astratte, ma uno strumento di lavoro che permette un’indagine della natura non basata sull’osservanza pedissequa dei testi antichi, come usa a quel tempo, ma sull’esperienza, i cui risultati devono essere interpretati e tradotti in geometria e relazioni matematiche. La matematica sarà la base della nuova scienza, la fisica, di cui Galilei può essere considerato il fondatore.

Nel 1591 viene chiamato come insegnante di matematica all’università di Padova e a Venezia incontra Marina Gamba, dalla quale avrà tre figli: Virginia (1600), Livia (1601) e Vincenzo (1606).

Negli studi di meccanica, della quale anche i concetti più semplici sono all’epoca sconosciuti, Galilei mostra la sua inventiva nel risolvere il problema delle misurazioni, usando il battito del polso o pesi di diverse quantità di acqua che gocciolano per le misure di tempo; pesando cartoncini per confrontare aree sconosciute, sopperendo così alla mancanza del calcolo differenziale; utilizzando il piano inclinato per rallentare i moti di caduta. Galilei osserva i fenomeni, li crea, li adatta alle sue esigenze, li interpreta matematicamente e geometricamente.

Nel 1608 in Olanda viene inventato un “occhialetto” e Galilei si mette subito in moto per realizzarne uno con il quale passa l’inverno a scrutare il cielo. Frutto delle sue osservazioni è la pubblicazione, nel marzo del 1610, del Sidereus Nuncius, nel quale equipara gli oggetti celesti a quelli terrestri e, grazie alla scoperta dei satelliti di Giove, dimostra che la Terra non è l’unico centro.

Nonostante da più parti gli amici lo sconsiglino, perché a Firenze manca la pluralità di vedute che c’è a Venezia, dopo 18 anni a Padova, decide di tornare nella sua città e, grazie all’appoggio di Cosimo de’ Medici, ottiene una cattedra all’Università di Pisa, ma senza obblighi di insegnamento. A Firenze diventa bersaglio di nemici potenti e presto viene accusato di eresia: Galilei è tranquillo perché gode dell’appoggio del Granduca e di molti uomini di Chiesa, ma nel viaggio a Roma del 1616, dopo un’attenta analisi delle sue opere, viene invitato a non difendere più l’ipotesi copernicana, dichiarata pubblicamente falsa e contraria alla Scrittura dalla Sacra Congregazione dell’Indice.

Malato e vessato da numerosi lutti, quando, nel 1623, Maffeo Barberini, suo amico ed ammiratore, diventa Papa Urbano VIII, Galilei è convinto di avere un appoggio incondizionato e pubblica Il Saggiatore, dedicandolo al Papa. Nel 1624, Galilei ha il permesso di scrivere sui due grandi sistemi del mondo purché li tratti, entrambi, come ipotesi. Impiega sei anni per portar a termine il libro, pronto nel 1630: è scritto in volgare, in forma di dialogo e copre di ridicolo il sistema tolemaico e i suoi difensori. Il dialogo si svolge tra Salviati, che rappresenta Galilei, Sagredo, che è l’uomo aperto alle novità, e Simplicio, aristotelico radicato nelle sue idee, che discutono del fenomeno delle maree e della caduta dei gravi. L’opera ottiene l’imprimatur, ma successivamente il Papa, riconoscendo la propria posizione in quella di Simplicio, si sente ridicolizzato. L’amicizia con Galilei, offesa e delusa, si trasforma in ostilità. La commissione istituita per analizzare l’opera stabilisce che Galilei ha contravvenuto agli ordini ricevuti e così in ottobre viene convocato dall’Inquisizione dinanzi al Sant’Uffizio. Il 22 giugno 1633, viene emessa la sentenza: Galilei è giudicato colpevole e sospetto d’eresia. Non tutti i dieci inquisitori presenti firmano la sentenza: il cardinale Francesco Barberini sostiene l’ipotesi della clemenza. La pena consiste nel rendere proibito il libro, nell’imporre a Galilei per tre anni la recita, una volta a settimana, dei sette salmi penitenziali e nel condannarlo al carcere, che viene tramutato in domicilio coatto, grazie all’intervento di Barberini.

La sentenza viene fatta conoscere ovunque, ma Galilei non perde i suoi sostenitori, tanto che la sua opera viene tradotta in latino e circola in Europa dal 1635.

Vincenzo Viviani, il benedettino Castelli e Torricelli saranno i segretari di Galilei fino alla sua morte, avvenuta il 9 gennaio del 1642 e lo aiuteranno a riordinare gli appunti quand’egli, ormai cieco da entrambi gli occhi, ha perso completamente la propria autonomia.

 

COMMENTO:

Biografia esauriente, ricca anche di parecchie curiosità sulla vita di Galilei, è molto scorrevole ed offre numerosi spunti di ricerca.

Pubblicato in Libri
Giovedì, 01 Agosto 2013 21:15

Vite matematiche

TRAMA:

Come ci dicono gli autori nell’introduzione, nel corso degli ultimi cinquant’anni sono stati dimostrati più teoremi che nei precedenti millenni della storia umana, eppure soltanto flebili echi di questa fervida attività di pensiero giungono al largo pubblico. Infatti, a parte casi sporadici la matematica rimane per lo più ignorata. Obiettivo di questo libro è quindi portare alla ribalta alcuni dei protagonisti di questa straordinaria avventura intellettuale, che ha messo a nostra disposizione nuovi e potenti strumenti per indagare la realtà che ci circonda.

Il punto di partenza sono i ventitre problemi di Hilbert, che diedero vita a un enorme complesso di ricerche di carattere logico e fondazionale.

BERTRAND RUSSELL (1872-1970) – Scrisse moltissimo, spaziando dai fondamenti della matematica alla logica, dalla teoria della conoscenza alla storia della filosofia, dalla filosofia morale alla polemica politica. È noto per il suo pacifismo, per essersi occupato di fondamenti della matematica e per il paradosso che porta il suo nome.

GODFREY H. HARDY (1877-1947) – Hardy è stato prima di tutto una mente molto brillante, e poi certamente un matematico di fama notevole. Viene ricordato per il ruolo particolare che ebbe nella scoperta del genio indiano Ramanujan e per la stesura dell’Apologia di un matematico.

EMMY NÖTHER (1882-1935) – È stata il punto di riferimento per l’algebra astratta, ma soprattutto per le donne americane che decidevano di dedicarsi alla matematica. Purtroppo la sua morte prematura le ha impedito di dare concretezza ad una scuola americana vera e propria. Secondo i suoi nipoti Emiliana e Gottfried: “Ciò che importa è che ha affrontato le difficoltà, ha perseverato, malgrado tutte le sciocchezze sulle donne, ed è divenuta uno dei matematici più significativi del suo secolo”.

PAUL ADRIEN MAURICE DIRAC (1902-1984) – Fisico teorico, si è occupato della fisica dell’infinitamente piccolo ed è considerato l’ispiratore e il fondatore dei fondamenti della teoria quantistica dei campi. La ricerca della bellezza matematica è stato il tratto distintivo della sua opera e ha dato frutti paragonabili a quelli di Newton e Einstein, anche se talvolta lo ha indotto a battaglie isolate nella comunità scientifica.

JOHN VON NEUMANN (1903-1957) – È ricordato per il suo contributo alla teoria dei giochi che permette un nuovo approccio allo studio dell’economia, per la sua collaborazione al Progetto Manhattan, ma soprattutto perché è considerato uno dei padri dell’informatica. Certamente ci troviamo di fronte ad un vero gigante del ventesimo secolo, una figura forse unica nella sua sbalorditiva capacità di coniugare un’intelligenza teorica di straordinaria profondità ad una visione “pratica” della scienza.

KURT GÖDEL (1906-1978) – Nella sua tesi di laurea, solamente ventitreenne, dimostrò il suo primo grande risultato, il teorema di completezza, importantissimo per la logica. Tre anni dopo, nel tentativo di estendere il risultato alla matematica, scoprì che ci sono verità indimostrabili e arrivò alla dimostrazione dei teoremi di incompletezza, risolvendo il secondo problema di Hilbert e distruggendo il suo programma sulla consistenza.

ROBERT MUSIL (1880-1942) – Scrittore, ma laureato in ingegneria, Musil si mantiene aggiornato per quanto riguarda le idee matematiche e fisiche che affollano l’inizio del XX secolo. Eppure spesso non accetta di essere considerato un “saggista” intriso di idee scientifiche, o peggio ancora un filosofo, si schermisce, rivendica il carattere specificamente poetico della sua opera.

ALAN MATHISON TURING (1912-1954) – Ebbe una parte importante nella decrittazione dei messaggi della macchina tedesca Enigma, lavorò in modo originale ai teoremi di incompletezza di Gödel e ai problemi di decidibilità di Hilbert e può essere considerato uno dei padri fondatori dell’era informatica e dell’intelligenza artificiale.

RENATO CACCIOPPOLI (1904-1959) – Impegnato soprattutto nell’ambito dell’analisi funzionale, dove dà contributi notevoli, ha il merito di aver cercato di sviluppare delle teorie generali, riavvicinando l’analisi italiana alle punte più avanzate della ricerca. Nella sua vita è stato anche un convinto oppositore del regime fascista, tanto che la famiglia denuncia suoi fantomatici problemi mentali per evitargli il carcere.

BRUNO DE FINETTI (1906-1985) – Fondamentali i suoi contributi alla teoria della probabilità e alla statistica, oltre che ad altri rami del sapere, come l’economia e la biologia. È forse stato uno dei primi matematici in Italia in grado di risolvere problemi di analisi tramite l’uso di computer.

ANDREJ NIKOLAEVIC KOLMOGOROV (1903-1987) – È probabilmente il maggior matematico sovietico del secolo, come dimostrato dalla sua vasta ed articolata attività scientifica. In molti di questi lavori il suo contributo ha addirittura rivoluzionato la nostra visione del problema.

BOURBAKI – Dopo l’interruzione per la Grande Guerra dello sviluppo della matematica francese, Jean Dieudonné, Jean Delsarte, Claude Chevalley, André Weil e Henri Cartan decidono di redigere un nuovo trattato, che abbia come obiettivo il massimo rigore possibile, con lo pseudonimo di Bourbaki che regala un alone di mistero alla storia del gruppo. Con il passare degli anni, diventa difficile mantenere vivi gli ideali fondazionali, tanto che dal 1983 non compare più alcuna pubblicazione con il suo nome.

RAYMOND QUENEAU (1903-1976) – Lettore infaticabile dalla cultura vastissima, Queneau si è trovato in contatto con i principali movimenti letterari e culturali presenti sulla scena parigina fin dagli anni Venti: ciò che lo contraddistingue è il suo interesse costante per la matematica. E non si tratta solo di un “passatempo”, visto che conosce le più recenti teorie scientifiche fin da adolescente.

JOHN F. NASH JR (1928- ) – Forse uno dei più brillanti matematici del ventesimo secolo, ha ottenuto risultati unanimemente considerati di altissimo valore. Purtroppo il suo lavoro è stato molto limitato nel tempo a causa della malattia da cui è affetto fin da giovane, la schizofrenia paranoide. Fortunatamente, nell’ultimo periodo della sua vita è uscito in parte dalla malattia ed è stato insignito del Premio Nobel, nel 1994, per il suo contributo alla teoria economica con i suoi risultati nella teoria dei giochi.

ENNIO DE GIORGI (1928-1996) – Ottenne importati risultati grazie ad un’intuizione fulminea unita ad una capacità eccezionale di far seguire ad essa una dimostrazione curata nei minimi dettagli. È ricordato in modo particolare dai numerosi allievi, per i quali è stato sempre una presenza importante: hanno appreso dal suo insegnamento e dal suo esempio un modo particolare di “fare matematica”.

LAURENT SCHWARTZ (1915-2002) – Schwartz è un intellettuale che ha vissuto tutti i grandi avvenimenti della seconda metà del Novecento, visto che ha dedicato gran parte della sua vita in favore dei diritti dell’uomo e dei popoli. Nella sua autobiografia, Schwartz afferma: “i matematici trasferiscono nella vita di ogni giorno il rigore del loro ragionamento scientifico. La scoperta matematica è sovversiva. È sempre pronta a rovesciare i tabù. I poteri stabiliti riescono a condizionarla molto poco.

RENÈ THOM (1923-2002) – Ha aperto la strada ad un originale tentativo di applicare la matematica ai fenomeni naturali, oggi noto come “Teoria delle catastrofi”.

ALEXANDER GROTHENDIECK (1928- ) – Il profano che si accosta all’opera matematica di Grothendieck dovrà […] guardar la matematica come un’arte e il matematico come un artista. Ha avuto un periodo produttivo molto limitato, visto che a 42 anni abbandona la matematica per dedicarsi al suo radicale antimilitarismo.

GIAN-CARLO ROTA (1932-1999) – Insegnando ed esplorando da anticonformista la matematica e la filosofia, ha rimesso in discussione, con coraggio ed energia, le correnti di pensiero più in voga, svelando nuovi affascinanti scenari e toccando profondi livelli di conoscenza. Matematico e filosofo, è stato un grande comunicatore e ha dato profondi contributi nell’ambito della combinatoria topologica.

STEVE SMALE (1930- ) – Oltre agli impegni matematici, si schiera contro il militarismo del proprio Paese a fianco degli studenti, tanto che approfitta del Congresso di Mosca per lanciare e fare sottoscrivere un appello di condanna dell’aggressione americana e di appoggio alla causa vietnamita.

MICHAEL F. ATIYAH (1929- ) – È senza dubbio uno dei matematici più prolifici e più influenti dell’ultimo secolo. Nelle motivazioni del premio Abel, del quale è stato insignito nel 2004, per la dimostrazione del teorema dell’indice, si legge: “Questo teorema ci permette […]di intravedere l’intrinseca bellezza della matematica in quanto stabilisce un nesso profondo tra discipline che appaiono fra loro completamente separate”.

VLADIMIR IGOREVIC ARNOL’D (1937- ) – A soli vent’anni ha risolto il tredicesimo problema di Hilbert, è noto per aver generalizzato il teorema di Kolmogorov e per i suoi studi di idrodinamica. È un ottimo insegnante e ha avuto un numero elevato di allievi, molti dei quali sono diventati matematici di prima grandezza e hanno contribuito a diffondere le sue idee ed il suo approccio unitario alla matematica (e alla fisica), ai suoi problemi e al suo insegnamento.

ENRICO BOMBIERI (1940- ) – Unico italiano ad essere stato insignito della Medaglia Fields (1974), “Bombieri è uno dei più eclettici e famosi matematici del mondo”, come recita il testo ufficiale della nomina a membro della National Academy of Sciences.

MARTIN GARDNER (1914- ) – È il più autorevole e prolifico scrittore di matematica ricreativa di ogni epoca e paese e la sua abilità si esprime nel saper affrontare anche le parti più complesse della matematica, trovando sempre degli spunti curiosi e coinvolgenti. Non ha compiuto studi scientifici e la sua cultura matematica è dovuta a studi autonomi.

F. WILLIAM LAWVERE (1937- ) – La ricerca dell’unità, di un quadro concettuale che renda chiare ed esplicite le nozioni fondamentali […] ha segnato fortemente il suo lavoro scientifico, fin dagli inizi, e continua tuttora a rappresentarne una forte componente. Studia i fondamenti anche perché connessi ad una delle sue passioni: la formazione matematica.

ANDREW WILES (1953- ) – È noto per aver dimostrato l’ultimo teorema di Fermat, al quale ha lavorato per sette anni in completa solitudine. Nell’intervista riportata riconosce la difficoltà insita nella matematica e per questo è necessario dedicarle la propria vita solo se si ha una vera passione.

 

COMMENTO:

Interessante excursus nella matematica del Novecento, secolo ricco di una fervida attività di pensiero.

A seconda degli autori, nell’articolo dedicato ad ogni matematico o scrittore matematico vengono sottolineati maggiormente gli aspetti biografici o quelli professionali, spesso inscindibili, vista la parte rilevante che la matematica ha avuto nella vita di molti di loro.

La lettura non è particolarmente impegnativa e gli articoli possono essere letti nell’ordine che si preferisce.

Pubblicato in Libri
Giovedì, 01 Agosto 2013 16:42

Il genio dei numeri

TRAMA:

Nato il 13 giugno del 1928, John Forbes Nash Junior mostrò da subito un gran talento per la matematica e una grande passione per lo studio e i libri: non si dedicava certo alle attività tipiche dei bambini della sua età e questo, per i suoi genitori, era fonte di preoccupazione costante.

Nel giugno del 1945 giunse al Carnegie Institute of Technology, con l’intento di diventare un ingegnere elettrotecnico come il padre, ma l’interesse per la matematica non tardò a conquistarlo: uno dei suoi insegnantilo definì “un giovane Gauss”. Nel 1948, scelse l’università di Princeton, ritenuta un ottimo centro per lo studio della matematica. La grande fortuna di Nash, se la si vuole chiamare fortuna, fu di entrare sulla scena matematica nel momento e nel posto tagliati su misura per i suoi bisogni particolari.

Fin da subito, Nash si distinse per la propria originalità e, soprattutto, per la propria presunzione.

A Princeton, numerosi erano i grandi con i quali Nash poté entrare in contatto. Fra di essi c’era John von Neumann, che aveva ideato, negli anni Venti, la teoria dei giochi e aveva scritto, consapevole del suo possibile utilizzo nell’ambito dell’economia, The theory of games and economic behavior. Nash si rese subito conto che questo libro, per quanto innovativo, conteneva solo un teorema importante, quello del minimax, ma per il resto costituiva una trattazione incompleta dell’argomento ed era poco applicabile alle scienze sociali. Scrisse così il suo primo saggio, “Il problema della contrattazione”,un’opera di carattere straordinariamente pratico per un matematico, soprattutto per un giovane matematico: caratterizzato da una grande originalità, il saggio forniva le risposte giuste al problema.

Nell’estate del 1949, John Nash si rivolse a Albert Tucker perché gli facesse da relatore della tesi, convinto di aver trovato qualche “buon risultato collegato alla teoria dei giochi”. Tucker fu una grande risorsa, visto che lo stimolò a continuare anche quando Nash cambiò idea e permise uno dei risultati più importanti della teoria dei giochi: l’equilibrio di Nash.

Dal 1950 al 1954, Nash lavorò per la RAND, un istituto civile di ricerche strategiche di Santa Monica, cheattrasse alcune delle menti migliori della matematica, della fisica, delle scienze politiche e di quelle economiche. L’originalità, l’eccentricità e la genialità di Nash lo distinsero subito e fu un duro colpo per i suoi superiori quando, nell’estate del 1954, furono costretti a licenziarlo in seguito ad un arresto dovuto ad atti osceni in luogo pubblico, ovvero, più specificamente, per la sua omosessualità.

Per quanto oggi possa sembrare strano, la dissertazione di dottorato che un giorno avrebbe fatto vincere un Nobel a Nash non ricevette una considerazione sufficiente per assicurargli un’offerta da un dipartimento matematico prestigioso. La teoria dei giochi non ispirava molto interesse o grande rispetto fra l’élite matematica,Nash quindi cercò un ambito matematico più puro, un problema importante, la cui soluzione gli sarebbe valsa i riconoscimenti dei colleghi: si occupò delle varietà algebriche reali e aprì la strada alla soluzione di nuovi problemi. Questo risultato gli valse il riconoscimento di status di matematico tra i suoi pari, ma non ottenne nessuna offerta dal dipartimento di matematica di Princeton, a causa dell’opposizione di alcuni membri della facoltà. Accettò quindi l’offerta del MIT come lettore: il MIT non aveva l’importanza di oggi, era una scuola d’ingegneria in fase di espansione, con un corpo insegnante giovane e quindi meno conosciuto di quello di Harvard o Princeton. Dall’arrivo al MIT nel 1951, Nash, su suggerimento di Wiener, si dedicò alla fluidodinamica, arrivando così al suo lavoro più importante.

Durante un ricovero in ospedale per l’asportazione di alcune vene varicose, Nash conobbe un’infermiera, Eleanor, che una volta dimesso corteggiò. Quando lei scoprì di essere incinta, Nash si mostrò molto contento, ma non manifestò l’intenzione di sposarla e di riconoscere il figlio in arrivo. Nato nel giugno del 1953, John David Stier, senza il cognome del padre, fu presto dato in affidamento e visse i suoi primi anni passando da una famiglia all’altra. Nash si comportò in modo insensibile ed egoista anche quando la donna cercò di coinvolgere i suoi genitori nella loro storia, perché lui si decidesse ad occuparsi del mantenimento del figlio.

Dopo la cacciata dalla RAND, tornò a Cambridge dove l’alunna ventunenne Alicia Larde, invaghita di Nash, riuscì a conquistarlo dopo un periodo di intenso corteggiamento: si sposarono nel febbraio del 1957.

Nash continuò i suoi lavori nell’area delle equazioni differenziali alle derivate parziali, ma venne preceduto da Ennio De Giorgi, matematico italiano praticamente sconosciuto: per lui fu un duro colpo, nonostante il suo lavoro fosseconsiderato quasi da tutti come un fondamentale passo avanti.

A trent’anni, Nash aveva già raggiunto importanti traguardi e la sua carriera appariva promettente eppure si sentiva più frustrato e insoddisfatto che mai. A trent’anni, Nash temeva che la parte migliore della sua vita creativa fosse finita.

Cominciò a dedicarsi alla congettura di Riemann e, nonostante molti colleghi abbiano cercato di metterlo in guardia da approcci già tentati, correndo i rischi del fallimento cercava di esorcizzare il timore del fallimento stesso. L’inaspettata gravidanza di Alicia fu forse la goccia che fece traboccare il vaso, compromettendo il già delicato equilibrio del matematico: all’inizio del 1959, lavorava ancora al problema di Riemann, ma affermava di voler costituire un governo universale. Dopo un intervento orribile di Nash ad una conferenza, Alicia consultò uno psichiatra della facoltà di medicina del MIT e, anche spinta dai timori per la propria incolumità, fece ricoverare il marito al McLean Hospital. 

Il bambino nacque poco prima che Nash fosse dimesso. Al rientro dal ricovero coatto, Nash decise di lasciare la cattedra al MIT e recarsi in Europa, dove tentò a più riprese di rinunciare alla propria cittadinanza americana, per potersi dichiarare cittadino del mondo. Nell’aprile del 1960 venne ricondotto in patria e dieci mesi dopo venne ricoverato di nuovo, questa volta al Trenton State Hospital, un ospedale pubblico, dove venne sottoposto alla terapia del coma insulinico:Nash avrebbe definito la terapia insulinica una “tortura” e ne risentì per molti anni ancora.

Nel 1961 Nash ottenne un incarico di ricercatore presso l’Institute for Advanced Study, ma già dal 1962, al termine di un suo viaggio in Europa, appariva molto malato. A partire dall’estate del 1963, fu dichiarato il divorzio da Alicia, che riteneva di essere una presenza troppo scomoda nell’eventuale percorso di guarigione del marito. Questo non le impedì di stargli vicino e di continuare ad assisterlo. Venne di nuovo ricoverato, questa volta alla Carrier Clinic, un istituto privato vicino a Princeton, fino al 1965.

Nel 1968, al suo quarantesimo compleanno, Nash risiedeva con la madre, ormai completamente dimenticato dal mondo: l’esistenza di uno schizofrenico è stata paragonata a quella di una persona che viva in una prigione di vetro e che batta alle pareti, incapace di essere udita, eppure molto visibile. Alla morte della madre, nel 1969, la sorella Martha lo fece ricoverare di nuovo: una volta dimesso, egli interruppe ogni rapporto con la sorella e partì per Princeton. Le sue condizioni apparivano stabili: Nash si dichiarò in seguito molto attento a non attirare l’attenzione per non essere ricoverato di nuovo. Visse con Alicia e il figlio dal 1970.

È impossibile dire con esattezza quando si verificò la miracolosa guarigione di Nash, che gli altri cominciarono a notare più o meno all’inizio degli anni novanta: il merito non fu di nuove cure. Secondo Nash, il merito spetta a lui, alla sua volontà di uscire dalla malattia. Nel 1994, la Reale Accademia svedese delle scienze decise di conferire al matematico il Nobel per l’economia, in considerazione dei risultati ottenuti all’inizio della sua carriera.

Il suo impegno attualmente continua con nuovi studi scientifici e, nella sua vita privata, ha ritrovato un equilibrio accanto ad Alicia, che ha accettato di sposarlo di nuovo nel 2001. Nash è riuscito a condividere la sua fortuna con chi gli sta accanto. Ha ricostruito il rapporto con John David, il figlio maggiore che una volta non voleva nemmeno sentirlo nominare. Passa molto tempo anche con John Charles, il secondogenito, che, come ha spiegato con orgoglio il giorno delle nozze, sta cercando di pubblicare una dimostrazione matematica. Parla ancora al telefono con la sorella Martha ogni settimana. Infine […]ha riconosciuto il ruolo fondamentale che Alicia svolge nella sua esistenza.

 
COMMENTO:
Una storia straordinaria, una vicenda umana molto toccante e coinvolgente, un libro che ci rende partecipi di una vita vissuta nella morte della follia, ma che è poi inaspettatamente risorta. 
Rileggere questo libro dopo sei anni dalla prima lettura mi ha permesso di apprezzarlo e comprenderlo meglio.
Da questo libro è stato tratto il film A beautiful mind di Ron Howard, con Russell Crowe: il film omette molti particolari che invece trovano posto nel libro, che si mostra per questo più completo. Anche perché il libro riporta i vissuti dei matematici suoi contemporanei, le sensazioni di Alicia e le sensazioni di Nash. Il film rende comunque al meglio la voglia di uscire dalla malattia: Nash afferma infatti di aver compiuto un atto di volontà e sente la propria guarigione come frutto di una sua scelta.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 16:36

Atomi in famiglia

TRAMA:
Figlio di un amministratore delle ferrovie e di una maestra elementare, Enrico Fermi nacque il 29 settembre del 1901, dopo la sorella Maria (1899) e il fratello Giulio (1900), morto nel 1915. La morte del fratello lasciò Enrico improvvisamente solo e con un grande vuoto: forse per questo motivo, cominciò a dedicarsi allo studio con tanta assiduità. Nei suoi studi, fu guidato dall’ingegnere Adolfo Amidei, un amico di famiglia, che prestò al giovane Enrico i libri che possedeva, uno alla volta, in ordine logico, per formargli solide basi matematiche e per dargli le nozioni fondamentali della fisica.
Fu proprio l’ingegnere a suggerire a Enrico di andare a Pisa, alla Reale Scuola Normale Superiore. Gli anni di Pisa, dal 1918 al 1922, furono caratterizzati da un’intensa vita goliardica, da lunghe gite sulle Alpi Apuane e da numerosi successi scolastici, nonostante il poco tempo dedicato allo studio. Dopo la laurea, avvenuta il 4 luglio del 1922, Enrico si recò a Roma per avere dal senatore Orso Mario Corbino, direttore dell’Istituto di Fisica di Via Panisperna, alcuni consigli per l’avvenire. Fermi trovò in Corbino un maestro affabile che mostrava comprensione e interesse sia per le questioni di fisica moderna sia per quelle umane. Per parte sua Corbino fu colpito dalla cultura scientifica di quel giovanetto timido e modesto, e ne intuì immediatamente l’eccezionale intelligenza.
Nell’autunno del 1926 divenne professore di ruolo all’Università di Roma e, grazie all’intraprendenza di Corbino, negli anni seguenti altri giovani vennero all’Istituto di Fisica: studenti nuovi, laureati di altre Università, fisici stranieri. Erano di passaggio: stavano alcuni mesi o alcuni anni, poi se ne andavano. Ma il nucleo iniziale rimase: Rasetti, Fermi, Segrè e Amaldi. Corbino li chiamava i suoi ragazzi e, come un padre, li seguiva affettuosamente nelle loro ricerche, oltremodo orgoglioso dei loro successi. I ragazzi di Corbino lavoravano insieme, in una collaborazione naturale e spontanea. Diversi di carattere, si adattarono l’uno all’altro, e ne risultò un’amicizia che andò crescendo col passar degli anni.
Enrico Fermi e Laura Capon si sposarono il 19 luglio del 1928: incontratisi per la prima volta una domenica di primavera del 1924, ebbero modo di ritrovarsi durante le vacanze estive del 1926 in Val Gardena. Nell’estate del 1930, i coniugi si recarono per la prima volta negli Stati Uniti, per un corso di lezioni di meccanica quantistica all’Università del Michigan ad Ann Arbor. 
Nel gennaio del 1934, Irène Curie e Frédéric Joliot annunciarono di aver scoperto la radioattività artificiale e Fermi decise di dedicarsi alla fisica sperimentale: con Amaldi e Segrè, si dedicò all’estrazione di neutroni dal radio. Verso la fine del 1935 il ritmo di lavoro era fiacco e i risultati scarsi per molti motivi: la guerra etiopica scoppiata in ottobre, l’allontanamento di Majorana, la partenza di Rasetti per gli Stati Uniti e il trasferimento di Segrè a Palermo. Fu la fine del gruppo di via Panisperna.
Il 10 novembre del 1938 la famiglia Fermi ricevette la telefonata dalla commissione del Nobel. Avendo già deciso di lasciare l’Italia, approfittarono del viaggio a Stoccolma per proseguire per gli Stati Uniti: nel settembre dello stesso anno erano state promulgate le leggi razziali e la situazione di Laura, ebrea per nascita, sarebbe diventata un vero problema per la famiglia, nonostante la notorietà del marito. La famiglia partì da Roma il 6 dicembre del 1938, Enrico ricevette il premio il 10 dicembre e il 2 gennaio 1939 sbarcarono in America. Per sei mesi, la famiglia abitò a New York, nel quartiere della Columbia University, poi si trasferirono in un villino a Leonia, nel New Jersey, nel settembre del 1939. 
Dopo che gli esperimenti condotti a Roma nel 1934 avevano apparentemente dimostrato che bombardando l’uranio con neutroni si produceva un nuovo elemento, Hahn, Strassman e Lise Meitner a Berlino fecero parecchi progressi in questo campo e la Meitner, costretta a rifugiarsi a Stoccolma dopo l’Anschluss, ne parlò a Bohr, che era in procinto di partire per l’America. La Meitner, con il nipote Frisch, avanzò l’ipotesi di una scissione dell’uranio, ovvero la separazione dello stesso in due parti quasi uguali, processo che sprigiona una grandissima quantità di energia nucleare, mettendo in fuga i neonati elementi a grandissima velocità in direzioni divergenti. Quindi progettarono un esperimento per verificare questa ipotesi e per misurare la quantità di energia che viene liberata nella scissione di un atomo di uranio. Avvisarono poi Bohr con un telegramma, per informarlo dei risultati positivi dell’esperimento e Bohr mise al corrente Enrico Fermi della nuova interpretazione dei suoi esperimenti del 1934. Fermi formulò l’ipotesi che l’uranio, nello scindersi in due pezzi, potesse emettere neutroni e non appena l’ipotesi di Enrico divenne nota, molti fisici sperimentali si misero a cercar neutroni nella scissione con grande alacrità e in preda a evidente eccitazione. Si cominciò a parlare di una “reazione a catena automantenuta”: i neutroni derivati dalla scissione avrebbero permesso la scissione di altro uranio che avrebbe generato quindi altri neutroni… e così via. Per la prima volta apparve agli occhi degli uomini la possibilità di sfruttare le illimitate riserve di energia contenuta nella materia. Si cominciò a parlare di armi atomiche e gli scienziati erano preoccupati per il fatto che l’inizio di questi studi fosse avvenuto in Germania, anche se non si sapeva se l’esperimento, ipotizzato in teoria, fosse realizzabile in pratica. 
Anche alla Columbia University si cominciò a lavorare per realizzare la reazione a catena: Fermi, con Pegram, Dunning e Anderson, stabilì un piano di ricerche da eseguire con il ciclotrone. Si unirono al gruppo anche Szilard e Zinn. 
Si decise di mettere al corrente il Governo dei progressi effettuati: Einstein, Szilard e Wigner, di comune accordo, decisero di preparare una lettera per il Presidente Roosevelt. L’avrebbe firmata Einstein, lo scienziato di gran lunga più insigne in tutti gli Stati Uniti. Una volta ricevuta la missiva, Roosevelt istituì un “Comitato Consultivo per l’uranio”. Inizialmente, l’appoggio del Governo fu ben poca cosa in termini economici, ma dopo l’attacco giapponese a Pearl Harbor nel dicembre del 1941, l’atteggiamento cambiò. 
Nel 1942 i Fermi si trasferirono a Chicago: Enrico lavorava al Laboratorio Metallurgico, il Met Lab, e tutto quello che vi succedeva era un segreto militare di primaria importanza. In questo laboratorio venne realizzata la prima pila atomica: la realizzazione della pila atomica veniva a coronare quattro anni di ricerche ininterrotte, di sforzi intensi, cominciati non appena fu annunciata la scoperta della scissione dell’uranio. L’esperimento della pila fu realizzato con successo il 2 dicembre del 1942. 
Nell’estate del 1944, la famiglia Fermi si trasferì al Sito Y.
Il lavoro atomico, chiamato “Reparto Manhattan”, era guidato dal generale Groves, che, con l’aiuto del prof. Robert Oppenheimer, cercò un luogo per costruire la bomba atomica. Fu Oppenheimer a suggerire a Groves una scuola-convitto per ragazzi, situata su un altopiano, in prossimità di Santa Fé. Sotto la direzione di Oppenheimer, sorse una vera e propria città a 2200 metri sul livello del mare, con più di 6000 abitanti alla fine della guerra. In quella città si raccolsero scienziati provenienti da tutte le parti degli Stati Uniti e dall’Inghilterra; e sparirono dal mondo. Per due anni e mezzo la città non venne segnata sulle carte geografiche, non ebbe riconoscimento ufficiale, non fece parte amministrativa del New Mexico, i suoi abitanti non ebbero il voto nelle elezioni. Quella città veniva chiamata Los Alamos dagli abitanti, Sito Y dalle poche persone al di fuori di essa che ne conoscevano l’esistenza, Casella Postale 1663 di Santa Fè da corrispondenti e amici dei residenti
La fine della guerra si avvicina, gli esperimenti si susseguono. Il 16 luglio 1945 ad Alamogordo (chiamata Trinity per misura di sicurezza) nel mezzogiorno del New Mexico era stata fatta esplodere la prima bomba atomica che fosse mai stata costruita. Il generale Farrell, che aveva preparato una relazione dell’avvenimento pubblicata in agosto dopo Hiroshima, descrisse l’esplosione con le seguenti parole: “Tutta la campagna fu illuminata come da un riflettore di intensità molte volte superiore a quella del sole di mezzogiorno. La luce era dorata, color porpora, violetta, grigia e azzurra. Illuminava ogni cima, ogni crepaccio e ogni cresta della vicina catena di montagne, con una vivida bellezza impossibile a descrivere. Trenta secondi dopo l’esplosione si ebbe dapprima lo spostamento d’aria che investì con forza persone e cose; seguì quasi immediatamente il boato forte, prolungato e terrificante che sembrava annunciare il giudizio universale.”
Nell’agosto del 1945 furono sganciate le bombe su Hiroshima e Nagasaki: il 14 agosto il Giappone si arrese. 
All’inizio del 1946, la famiglia Fermi tornò a Chicago, dove Fermi lavorò ancora in università e, in marzo, con altri quattro scienziati ricevette la medaglia al merito del Congresso degli Stati Uniti per la parte avuta nell’attuazione della bomba atomica.
 
COMMENTO:
La descrizione accurata della vita a Los Alamos, il racconto della partenza per l’America della famiglia Fermi, il comportamento di Enrico Fermi durante l’esperimento Trinity… sono solo alcune delle curiosità contenute in questo libro, nel quale Laura Fermi presenta un’ottima combinazione di racconti di vita familiare con il grande fisico e di elaborate spiegazioni scientifiche del lavoro del marito. Il libro è semplice e scorrevole, accessibile anche per coloro che non hanno alcuna preparazione in campo fisico. 
La vita di Enrico Fermi appassiona il lettore e il contesto storico nel quale si è svolta rivela una serie di sfaccettature che non si possono ritrovare in un libro di storia, che ci parla degli avvenimenti della seconda guerra mondiale: gli eventi di quegli anni sono, infatti, presentati con il filtro delle emozioni degli spettatori di quegli anni, spettatori che riescono a diventare parte attiva e che vivono sulla propria pelle le conseguenze delle scelte di personaggi come Hitler e Mussolini. 
Libro consigliatissimo a tutti.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 16:31

Il taccuino segreto di Cartesio

TRAMA:
Cartesio nacque il 31 marzo del 1596. Studiò presso il collegio dei gesuiti a La Fléche e, a causa della sua gracilità, il padre chiese una cura particolare per lui: gli venne quindi concesso di dormire fino a tardi e questo gli permise di sviluppare un metodo di studio autonomo. Nel 1618 si recò in guerra come volontario con Maurizio di Nassau: non pagato, poté però godere di grande libertà e studiare liberamente la scienza.
La mattina del 10 novembre del 1618, Cartesio si trovava a Breda quando, sul tronco di un albero nella piazza principale della città, venne affisso un manifesto. Un olandese spiegò a Cartesio il quesito e questi giunse alla soluzione: la risoluzione dell’enigma olandese riempì Cartesio di entusiasmo per la matematica. Gli aveva rivelato di avere un dono speciale. Cominciò a credere che la matematica racchiudesse il segreto che dà accesso alla comprensione dell’universo. La maggior parte delle mattine al campo rimaneva a letto a scrivere e a leggere di matematica e a esplorarne le applicazioni
Accampato sulle sponde del Danubio, con l’esercito di Massimiliano duca di Baviera, nella notte tra il 10 e l’11 novembre 1619, Cartesio trovò i fondamenti di una mirabile scienza, come scrive nell’opera Olympica, a seguito di tre sogni, che interpretò come l’indicazione che la sua missione nella vita sarebbe stata l’unificazione delle scienze. L’opera di Cartesio avrebbe fatto luce su tutta la matematica, restituendo la sapienza dell’antica Grecia al nostro mondo moderno e avrebbe preparato il terreno per lo sviluppo della matematica fino al XXI secolo.
Nel 1620, Cartesio lasciò l’esercito e all’inizio del 1623 tornò a Parigi dove studiò geometria in solitudine e trascrisse le sue deduzioni in un taccuino, in un linguaggio criptico per evitare che qualcuno potesse trarre la conclusione che era un affiliato dei Rosacroce, una setta che studiava la scienza in segreto per evitare le persecuzioni dell’Inquisizione: se fosse stato identificato come tale, la sua carriera scientifica e forse la sua sicurezza avrebbero potuto essere in pericolo.
Alla fine del 1628, Cartesio si trasferì in Olanda: nel Discorso sul Metodo, dichiarò che si era trasferito in Olanda perché desiderava allontanarsi dai luoghi in cui aveva delle conoscenze e vivere in un paese in cui una popolazione attiva e prospera godeva i frutti della pace. Inoltre in Olanda le leggi che regolavano la stampa delle opere erano più liberali e probabilmente anche questo ebbe il proprio peso nella decisione di Cartesio. Per vent’anni continuò a vagare per il paese, mantenendo contatti epistolari con gli intellettuali d’Europa e con l’amico Mersenne, attraverso il quale filtrava tutta la corrispondenza. 
Nel 1629 Cartesio cominciò a scrivere un’opera sulla fisica e la metafisica, che doveva essere un tentativo di riconciliare la scienza con la fede religiosa, ma la notizia del processo di Galilei lo convinse a non pubblicare le proprie considerazioni, che videro la luce solo quattordici anni dopo la sua morte. 
Durante la sua permanenza ad Amsterdam, ebbe una storia con la sua domestica Hélena Jans, dalla quale ebbe una figlia il 19 luglio del 1635, Francine, che morì di scarlattina nel settembre del 1640: per Cartesio fu una grossa sofferenza. 
Cartesio pubblicò a Leida, nel 1637, in forma anonima il Discorso sul metodo per ben condurre la propria ragione e ricercare la verità nelle scienze. Più la Diottrica, le Meteore e la Geometria che sono saggi di questo metodo. Il libro venne pubblicato in francese, per consentirne una maggiore diffusione, ma in Francia non venne mai pubblicato. La filosofia di Cartesio, che era esposta nel Discorso (oltre che nelle sue opere successive), costituì la base del razionalismo seicentesco, una filosofia che pone l’accento sulla ragione e l’intelletto piuttosto che sul sentimento e l’immaginazione
Cartesio rompe deliberatamente con il passato, ed è deciso a iniziare da capo la ricerca della verità, senza mai fidarsi dell’autorità di qualsiasi filosofia precedente. […] Il suo trattato fu un grande successo editoriale in tutta Europa, ma le polemiche suscitate da quest’opera lo indussero ad allontanarsi ancora di più dalla gente e a interagire con il mondo esterno quasi esclusivamente per lettera.
Cominciò a lavorare alla scoperta che l’ha reso più famoso, il piano cartesiano, e dimostrò che era possibile risolvere con riga e compasso la costruzione della radice quadrata di un numero ma non quella della radice cubica, risolvendo il problema di Delo.
Venne contattato dalla principessa Elisabetta di Boemia, che viveva anch’essa in esilio in Olanda: aveva letto il Discorso e voleva approfondirne la filosofia. Si conobbero nel 1642 e la principessa divenne un’impegnata studiosa della filosofia di Cartesio. Si scambiarono numerose lettere, molto affettuose, tanto che un biografo ipotizzò una relazione intima tra i due. 
Sfinito dalla querelle di Utrecht, durante la quale venne accusato di diffamazione ai danni di Voetius e di ateismo si recò a Parigi, dove conobbe Claude Clerselier, consigliere del Parlamento e appassionato della sua filosofia. Questi gli fece conoscere Pierre Chanut, suo cognato, che divenne presto diplomatico di Francia in Svezia, da dove fece da tramite tra Cartesio e la regina Cristina: Chanut intendeva servirsi della cultura per cementare l’alleanza tra la Francia e la Svezia, e Cartesio rientrava a meraviglia in questo piano.
Cartesio accettò con riluttanza l’invito della regina a recarsi in Svezia per insegnarle la sua filosofia e partì nel 1649. La regina si mostrò una studentessa perfetta, ma voleva ricevere le lezioni di Cartesio dalle cinque del mattino. Cinque mesi dopo l’arrivo a Stoccolma, Cartesio si ammalò e gli venne diagnosticata una polmonite. Per i primi due giorni, Cartesio rifiutò di consultare un medico, ma poi dovette cedere alle insistenze della regina, che gli inviò il suo “secondo dottore”, nemico acerrimo del filosofo. Al terzo giorno, sentendosi meglio, Cartesio chiese che gli venisse preparata una bevanda alcolica con del tabacco: la bevanda gli venne preparata dal medico e, stranamente, Cartesio subì un peggioramento nelle sue condizioni di salute. Morì qualche giorno dopo, l’11 febbraio del 1650.
Chanut, senza consultarsi con nessuno, decise di mandare tutti gli scritti di Cartesio al cognato Clerselier a Parigi, che ne mantenne il possesso fino alla propria morte, avvenuta nel 1684. In seguito scomparvero. 
Nel corso dei suoi studi, Leibniz si appassionò alla filosofia di Cartesio e voleva leggerne tutti gli scritti, per questo si rivolse a Clerselier, nel giugno del 1676. Leibniz aveva gli strumenti per decifrare il linguaggio che Cartesio aveva usato nel suo taccuino, intitolato De solidorum elementis, nel quale il filosofo parlava dei solidi platonici. Leibniz non copiò interamente il taccuino, ma si limitò ad aggiungere alcune note a margine, che solo nel 1987 verranno decifrate da Pierre Costabel. Cartesio aveva analizzato i misteriosi solidi di Platone e tra questi oggetti geometrici tridimensionali aveva scoperto la regola che governa la loro struttura. Era il Santo Graal della matematica greca, qualcosa che i greci avevano agognato di possedere. Ma Cartesio non aveva rivelato a nessuno la sua scoperta. La formula non gli fu quindi mai attribuita e venne in seguito indicata come Formula di Eulero
Gli sforzi di Cartesio per tenere nascoste le sue scoperte furono inutili, visto che le sue opere vennero messe all’Indice nel 1663 e furono ristampate solo nel 1824.
 
COMMENTO:
Interessante e originale biografia di Cartesio, costruita a partire da un taccuino mai ritrovato che lascia aperto un enigma: Cartesio appartenne realmente alla setta dei Rosacroce? Ed inoltre: il taccuino può dimostrare questa appartenenza? 
Leggendo questo libro, non potremo avere una risposta a queste domande, ma potremo essere maggiormente consapevoli della grandezza del genio di Cartesio, che ha saputo anticipare la formula di Eulero.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 15:53

Enrico Fermi, fisico

TRAMA:
Come ci dice Segrè nella prefazione, per quanto Fermi sia vissuto in un’epoca piena di drammatici eventi storici e per quanto, a causa del suo lavoro, si sia trovato ad avere in essi una parte importante, la sua vita più intensa e avventurosa fu quella intellettuale della scoperta scientifica
Fermi nacque il 29 settembre 1901: imparò a leggere e scrivere precocemente e rivelò subito una memoria fenomenale. Si presentò al concorso di ammissione alla Scuola Normale di Pisa il 14 novembre 1918: il saggio aveva un livello e una maestria che avrebbe fatto onore a un esame di laurea universitaria, tanto che il prof. Pittarelli, dell’Università di Roma, disse a Fermi di non aver mai incontrato uno studente come lui e che senza dubbio egli era una persona straordinaria, che sarebbe andato molto lontano e sarebbe diventato uno scienziato importante.
Discusse la tesi il 7 luglio 1922 e gli venne conferita la laurea magna cum laude. In quegli anni, l’interesse dei fisici era focalizzato sulla relatività e Fermi cominciò con i primi lavori proprio nel campo della relatività generale. Studiò a Gottinga e, al rientro a Roma, ricevette, per intercessione di Corbino, l’incarico dell’insegnamento della matematica per i chimici. Lavorò a Leida, poi a Firenze, vinse il concorso di fisica matematica a Cagliari, ma in un ulteriore concorso del 1926, ottenne Roma: in questo modo aveva praticamente raggiunto lo zenith di una carriera universitaria.
In quegli anni, l’insegnamento della fisica era condotto come un servizio per i futuri ingegneri o come preparazione per gli insegnanti delle medie, ma Fermi riuscì a rivoluzionarne l’insegnamento e la gestione. La sede delle attività era il vecchio istituto di fisica dell’Università di Roma sito in via Panisperna 89a: le apparecchiature erano mediocri e l’officina meccanica antiquata, ma, mantenendo frequenti contatti con l’estero, Fermi risollevò lo stato della fisica italiana. 
Il 19 luglio del 1928 sposò Laura Capon, dalla quale ebbe due figli: Nella, 31 gennaio 1931 e Giulio, 16 febbraio 1936. 
Visitò gli Stati Uniti per la prima volta nel 1930: in Europa la situazione stava degenerando, con l’avvicinarsi del secondo conflitto mondiale e la Germania stava perdendo il proprio primato nella fisica, mentre l’America appariva come il paese del futuro, così Fermi cominciò a perfezionare la propria conoscenza dell’inglese e a pubblicare i lavori più importanti in inglese. 
Con la promulgazione delle leggi razziali, Fermi, dato che la moglie era ebrea, cominciò a prendere in considerazione l’idea di un trasferimento negli Stati Uniti e scelse la Columbia University di New York. Il 10 novembre 1938 ricevette l’annuncio telefonico del conferimento del premio Nobel e decise quindi di proseguire per gli Stati Uniti partendo da Stoccolma, dopo aver ritirato il premio.
Alla Columbia, Fermi trovò amici personali e colleghi: ricominciò a insegnare con energia, pur lasciando il primato alla ricerca. 
Gli americani ancora non capivano l’urgenza, l’importanza e la vastità dei problemi posti dalle possibili applicazioni della fisica nucleare, ma fra il 1939 e il 1940 si fecero grandi progressi nella fisica dei reattori: lo sviluppo dell’energia atomica fu compiuto da fisici europei immigrati da poco, in quanto in America lo sviluppo del radar aveva la precedenza su tutto e i fisici americani erano per la maggior parte impegnati con progetti che lo riguardavano. Dopo l’invasione della Polonia da parte di Hitler, il governo statunitense cercò di rafforzare la propria posizione militare e durante la primavera del 1941 si cominciarono a vedere segni di interesse per gli studi sulle applicazioni nucleari da parte di fisici americani importanti. La decisione di fare uno sforzo senza limiti fu annunciata il 6 dicembre 1941, alla vigilia dell’attacco di Pearl Harbor
Si formò il Manhattan District del Corpo del Genio Militare (MED), alla cui guida militare venne nominato il generale Leslie R. Groves, il 17 settembre 1942. Tra il generale e Fermi si creò un buon rapporto, per quanto provenissero da mondi completamente diversi: il militare poneva l’accento sulla segretezza del progetto e teneva lo sguardo allo scopo finale, lo scienziato aveva bisogno di comunicare per procedere negli studi e si lasciava coinvolgere nelle novità scientifiche che si rivelavano con il progresso del progetto. 
Il 2 dicembre 1942 venne realizzato un esperimento che segna una pietra miliare nello sviluppo dell’energia atomica: era però diventato chiaro che questi sforzi dovevano essere sensibilmente intensificati per poter raggiungere in tempo conclusioni utili e che sarebbe stato necessario disporre di un apposito laboratorio dedicato alla costruzione della bomba. Dopo un sopralluogo, venne scelta come sede per il laboratorio Los Alamos, sede di un collegio privato per ragazzi. Oppenheimer fu messo alla guida del progetto e vi si riunirono buona parte dei fisici nucleari più attivi e brillanti del mondo. L’età media del gruppo era assai bassa, circa 32 anni, solo alcuni avevano passato i quaranta. Fermi si stabilì a Los Alamos solo nell’agosto del 1944, lavorandovi a tempo pieno. Si trovava bene: funzionava come una specie di oracolo a cui ogni fisico con problemi difficili poteva rivolgersi e spesso ricevere valido aiuto. L’altro oracolo era Von Neumann, con il quale Fermi aveva un rapporto di amicizia e stima.
Il 16 luglio alle 5,30 ci fu l’esperimento Trinity, con il quale fu fatta esplodere la bomba. L’impresa ebbe successo. 
Alla fine della guerra, Fermi accettò la nomina a Chicago e lasciò Los Alamos il 31 dicembre1945. Fu in seguito membro del General Advisory Committee, dal gennaio del 1947 all’agosto del 1950, fu Presidente dell’American Physical Society, tornò in Europa per alcune conferenze e continuò l’attività di insegnante e di fisico sperimentale fino alla morte. 
Morì il 29 novembre 1954, poche settimane dopo l’inutile intervento chirurgico per l’asportazione di un cancro allo stomaco.
 
COMMENTO:
È un libro particolarmente ricco: pieno di riferimenti storici, pieno di aneddoti riguardanti la vita di Fermi e il lavoro dei fisici impegnati nel Progetto Manhattan, pieno di riferimenti scientifici per quanto riguarda le ricerche di quegli anni. 
La figura di Fermi, affascinante e accattivante, coinvolge il lettore, che vorrebbe conoscere le motivazioni che hanno spinto i fisici a partecipare al Progetto Manhattan. Ma persino Segrè, suo carissimo amico e collaboratore fin dagli inizi, non conosce i pensieri più intimi e personali di Fermi. Per certi aspetti, quindi, potremmo dire che la biografia si mantiene in superficie e d’altra parte è lo stesso Segrè che ci avvisa nella prefazione: “Nel suo libro Atomi in Famiglia la moglie Laura ha trattato altri aspetti della vita di Fermi e, ovviamente, i nostri punti di vista sono differenti: il suo è quello di una compagna devota e affezionata, il mio è quello di un discepolo amico e collega scienziato”.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 15:50

Sophie Germain una matematica dimenticata

TRAMA:
Sophie Germain nasce il primo aprile del 1776. A tredici anni scopre il suo interesse per la matematica, leggendo la “Storia della matematica” di Jean-Étienne Montucla, trovato nella biblioteca paterna. Leggendo l’episodio di Archimede, arriva a concludere che se l’analisi di un problema geometrico poteva essere tanto interessante da anteporsi alla preoccupazione per la sopravvivenza, quello della matematica doveva essere veramente un mondo affascinante
Studia da autodidatta, contravvenendo gli ordini della famiglia, contraria a questa sua passione, ma dal 1794 può frequentare l’École Polytechnique, assumendo l’identità di un ex studente, tale Antoine-Auguste Le Blanc. Tra gli insegnanti, Lagrange restò colpito dall’ingegnosità di Le Blanc e chiese un incontro, durante il quale la Germain fu costretta a rivelare la propria identità. In Lagrange Sophie trovò un amico e finalmente un insegnante. Lagrange la mise a conoscenza dell’esistenza del problema dell’Ultimo Teorema di Fermat e, arrivata a un risultato importante, Sophie osò scrivere a C.F. Gauss, firmandosi con il suo pseudonimo. La lettera di Sophie suscitò in Gauss viva impressione e stupore per la profondità dei risultati da lei ottenuti
Nel 1806, a seguito dell’invasione della Prussia da parte di Napoleone, Sophie intervenne presso un generale, amico del padre, perché facesse in modo che Gauss non corresse pericoli. Fu così che Gauss venne a conoscenza della vera identità della Germain: “… quando una persona del suo sesso che, secondo i nostri costumi e pregiudizi, deve incontrare difficoltà infinitamente superiori a quelle degli uomini nel familiarizzare con queste scabrose ricerche, riesce nondimeno a sormontare gli ostacoli ed a penetrare le parti più oscure della materia, allora senza dubbio ella deve possedere il coraggio più elevato, talenti straordinari e un genio superiore.
A seguito dei suoi lavori, ricevette una medaglia dall’Institut de France e fu la prima donna ammessa a seguire le lezioni dell’Accademia delle Scienze. Ricevette un premio di 3000 franchi da Napoleone, ma non si presentò a ritirarlo, a causa della sua timidezza. 
Grande fu il suo lavoro: la sua influenza sulla comunità scientifica era tale da far eleggere Fourier come segretario perpetuo all’Accademia delle Scienze e fu l’unica a rendersi conto delle capacità di Galois.
Proprio a seguito delle sue abilità, Gauss chiese e ottenne che l’Università di Gottinga le conferisse una laurea “honoris causa”, ma ella morì, il 26 giugno del 1831, prima che le venisse conferita.
 
Le lettere presenti nel testo sono in ordine cronologico, vanno dal 1802 al 1831. Sono ventiquattro lettere, ma l’ultima è di Sophie Germain e indirizzata a Guglielmo Libri. Una lettera è del Libraio Bernard alla madre, ma le altre sono tutte per lei: tra i matematici Cauchy (due), Delambre (due), Fourier (sei), Gauss (una), Lagrange (una), Legendre (quattro), Navier (una), Poisson, nei confronti del quale non nutriva una buona opinione (una). Poi c’è una lettera di Choron, teorico della musica, una di D’Ansse de Villoison, ellenista, una di Tessier, medico e una di Libri, storico.
Seguono alcune citazioni della Germain e alcune indicazioni biografiche degli autori delle lettere.
 
COMMENTO:
Il libro costituisce un semplice assaggio, che lascia, però, la bocca un po’ asciutta. Troppo scarne sono le notizie di Sophie Germain: il libro basta per intuirne la grandezza e l’originalità, ma non per gustarne fino in fondo l’impatto che essa ha avuto sui suoi contemporanei. Per quanto riguarda le lettere, manca un filo conduttore che faccia capire meglio il loro significato e che le possa collocare meglio nella vita della Germain. 
Rispetto alla biografia di Galois, il lavoro sulla Germain appare quindi scarno, povero. Si sarebbe potuto scrivere molto di più…
Pubblicato in Libri
Giovedì, 01 Agosto 2013 15:48

Autobiografia di un fisico

TRAMA:
Emilio Segrè nasce il 30 gennaio del 1905 (anche se la data ufficiale è il primo febbraio). Ultimo di tre figli, trascorre l’infanzia a Tivoli, fino al 1917, quando si trasferisce a Roma. Gli zii paterni sono ben noti negli ambienti culturali italiani, mentre il padre ha come attività principale la gestione delle cartiere. Dopo aver frequentato il liceo classico e aver incontrato professori dei quali aveva poca stima, si iscrive al biennio di matematica e fisica propedeutico a ingegneria: L’idea di una carriera di fisico mi avrebbe allettato molto, ma sembrava troppo aleatoria.
Al terzo anno di ingegneria, annoiato da una scuola nella quale non si trovava bene, conosce Franco Rasetti, assistente di Corbino e intimo di Fermi. Ed è proprio a Fermi che Rasetti lo presenta. I due erano in cerca di studenti da allevare, io ero in cerca di professori e ci combinammo bene. Decide quindi di compiere il passaggio a fisica, anche se la famiglia accolse con freddezza questa sua scelta. 
Laureatosi nel luglio del 1928, frequenta la Scuola Ufficiali di Spoleto durante il servizio militare.
Nel 1931 comincia a viaggiare per l’Europa, incontrando fisici importanti. 
Conosce la moglie agli inizi del 1934: Elfriede Spiro, fuggita dalla Germania l’anno prima, è ebrea come Segrè. Si sposano il 2 febbraio del 1936, in occasione del suo trasferimento a Palermo, dopo aver vinto la cattedra di Michele La Rosa, morto prematuramente. Segrè aveva l’obiettivo di ristabilire la fisica, risistemare l’insegnamento e dare nuovi input alla ricerca. 
Nell’estate del 1938, Segrè è a Berkeley per compiere delle ricerche. Sbarcato a New York il 13 luglio del 1938, si fa raggiungere dalla moglie tre mesi dopo, a causa del clima sempre più oppressivo esistente in Italia. Nell’estate del 1942 si radunò un gruppo teorico diretto da Oppenheimer, per iniziare il progetto di una bomba nucleare. Quando gli viene proposto di partecipare al progetto di Los Alamos, Segrè non ha dubbi: Sentivo il dovere di aiutare un paese che mi aveva accolto quando mi trovavo in una situazione difficile. A parte questo, l’idea di poter contribuire alla distruzione di Hitler e delle sue infamie e alla conclusione vittoriosa della guerra mi allettava grandemente.
Dopo l’esperimento Trinity del luglio 1945 e dopo Hiroshima, Segrè torna a Berkeley, dove ottiene una buona posizione universitaria. Nel 1947 torna in Italia: deve sistemare alcune questioni d’affari, dopo la morte dei genitori. 
La morte di Fermi per un cancro allo stomaco, il 29 novembre 1954, lascia Segrè profondamente scosso. 
Continua nel frattempo la sua corsa al Nobel, per il quale lo stesso Fermi l’aveva proposto un paio di volte. Il Premio Nobel arriva nel 1959: Mi è rimasto sempre un profondo rammarico che né i miei genitori, né lo zio Claudio, né Corbino, né Fermi abbiano potuto vedere il Pippi laureato.
Il 15 ottobre 1970 muore la moglie. Segrè contrae un secondo matrimonio nel 1972 con Rosa Mines e successivamente viene messo a riposo dall’attività di Berkeley per raggiunti limiti d’età.
Segrè muore il 22 aprile del 1989: La vita che era cominciata a Tivoli ottantaquattro anni prima era giunta al termine.
 
COMMENTO:
Libro intenso e coinvolgente. Le vicende personali di Segrè e i suoi studi sono strettamente intrecciati con le vicende storiche del Novecento: l’epoca del fascismo, la seconda guerra mondiale, la bomba atomica, il dopoguerra, non sono solo uno sfondo, perché determinano le scelte di vita dell’uomo, fanno di lui ciò che è stato. I giudizi di Segrè riguardo le persone che hanno accompagnato la sua vita sono schietti e sinceri: vi si legge tutta la sua stima per Fermi e Corbino, ma non mancano critiche ai fratelli e considerazioni molto personali che non si fa scrupolo di pubblicare.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:56

Professione matematico

TRAMA:
Dodici interviste ad altrettanti matematici italiani. La prima cosa sorprendente è che la maggior parte degli intervistati non ha scoperto molto presto la propria passione per la matematica, alcuni sono addirittura laureati in fisica. È unanime l’idea che il computer non abbia sostanzialmente cambiato il modo di fare ricerca. Il problema dei cervelli in fuga, invece, è in realtà segnalato come mancanza di ricchezza per l’Italia: i continui viaggi indicano un importante e vitale scambio di idee, purtroppo però nessuno straniero si sente invogliato a venire in Italia e questa è la vera povertà. Unanime è la critica nei confronti della riforma universitaria, unanime l’elenco delle qualità necessarie per diventare matematici eccellenti: l’interesse, la fantasia, la disciplina, lo studio, l’importanza delle buone guide… ma attualmente sembra tutto più difficile, visto che lo studente medio mostra una difficoltà di concentrazione sempre maggiore e mancano i nessi logici, la capacità di ragionare.
I matematici intervistati sono:
GIUSEPPE DA PRATO: laureato in fisica, ritiene che la stessa sia un utile strumento per capire i problemi concreti da cui nascono certe questioni di carattere matematico.
CORRADO DE CONCINI: presidente dell’Indam, agenzia di finanziamento della ricerca matematica, ritiene sia importante comunicare il fascino della matematica.
MICHELE EMMER: figlio di un regista, si occupa di superfici minime, ma anche di cinema.
FRANCO FAGNOLA: si occupa dello sviluppo del sesto problema di Hilbert.
ENRICO GIUSTI: ha lavorato con De Giorgi e Bombieri, ma oggi si occupa molto di divulgazione matematica. A lui si deve la fondazione del primo museo dedicato interamente alla matematica: i Giardini di Archimede.
GIORGIO ISRAEL: contesta la matematizzazione della sociologia e dell’economia, perché solo in fisica il processo è ormai collaudato e in biologia sta già dimostrando la sua efficacia. Esiste un limite nella rappresentazione matematica dei fenomeni.
PIERGIORGIO ODIFREDDI: logico, si occupa da alcuni anni della divulgazione della matematica. Esprime la sua preoccupazione per la crescente superficialità della società.
MARIO PRIMICERIO: matematico applicato, si è avvicinato alla scienza grazie alla propria curiosità. Parla diffusamente delle possibili collaborazioni, da lui incentivate, fra università e industria.
ALFIO QUARTERONI: espone molti aspetti curiosi delle applicazioni matematiche, come ad esempio il lavoro per il team Alinghi e sottolinea l’importanza del mettersi in discussione e del cambiare ogni tanto la propria attività, per mettersi alla prova.
GIUSEPPE TOMASSINI: si occupa di geometria superiore, ma in realtà la distinzione tra i vari ambiti non ha più molta importanza: è necessario trattare i problemi nella prospettiva più ampia possibile. 
CARLO TRAVERSO: parla non solo dell’algebra computazionale, di cosa sia e delle sue applicazioni, ma anche delle competenze richieste per essere ammessi a un corso di dottorato.
EDOARDO VESENTINI: sottolinea che fare ricerca matematica significa “rompersi la testa” su un problema e paragona la matematica a una droga.
 
COMMENTO:
Dalle parole degli studiosi di matematica emerge una grande passione per l’oggetto del loro studio e forse è proprio questo che rende la lettura del libro così piacevole. Ma questo non è certamente l’unico lato positivo in un libro che si legge d’un fiato. 
Le risposte inerenti le prospettive di lavoro per un matematico aprono davanti ai nostri occhi l’immagine di un mondo sconosciuto, poco noto anche a chi ha studiato matematica. Forse perché, come dice Enrico Giusti: la matematica “è un po’ come il nostro scheletro: da fuori non si vede, ma guai se non ci fosse!”.
Pubblicato in Libri
Pagina 3 di 4