Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Domenica, 30 Settembre 2018 14:19

Nel mondo dei frattali

«Nel mondo dei frattali» è stato pubblicato nel 2001 nella collana “I dialoghi” della Di Renzo Editore: nato da un’intervista dell’editore Sante di Renzo e grazie alle sue domande Benoit Mandelbrot sviluppa con sistematicità la materia oggetto della sua ricerca e ci racconta la sua vita. Il nome di Mandelbrot è davvero strettamente connesso ai frattali, questi oggetti a metà tra la geometria e l’arte, ai quali lui stesso ha dato il nome, nel 1975: «Il mio sogno era decisamente romantico: trovare un qualche ordine in un campo – anche insignificante – dove chiunque altro aveva visto solo caos!». Mandelbrot ha lavorato dal 1974 al 1993 presso l’IBM, dove, in quanto «ribelle della scienza» ha potuto trovare un ottimo ambiente, «migliore di qualsiasi dipartimento universitario, sia francese che americano». È stato membro dell’Accademia Nazionale delle Scienze americana e ha ricevuto numerosi riconoscimenti, nel corso della sua carriera, tra i quali nel 1993 il Wolf Prize per la fisica.

Il libro è il racconto della sua vita, ma non solo: la nascita a Varsavia, la fuga in Francia per scampare ai nazisti e, dopo gli studi universitari a Parigi, la borsa di studio al Caltech e il lavoro all’IBM sono le tappe che hanno caratterizzato la vita di Mandelbrot, ma c’è dell’altro, come la sua propensione, fin da subito, a risolvere i problemi con l’aiuto della geometria, prima ancora di svolgere i calcoli. Il suo trionfo, i frattali, non sono stati una scoperta immediata, sono piuttosto il frutto di una lenta e graduale maturazione: «Ho concepito, sviluppato e applicato in tanti ambiti una nuova geometria della natura, una geometria che trova ordine nelle forme e nei processi caotici.» Questa geometria era già nata prima di lui, ma non è realmente esistita fino a quando lui non l’ha concepita, dandole un nome nel 1975 e così i frattali, prima considerati «qualcosa di mostruoso, di non intuitivo, bizzarro e impossibile», una volta disegnati a pc, una volta fatta emergere l’«impressionante armonia» che li caratterizza, diventano qualcosa di unico e irrinunciabile, visto che «la geometria frattale, oltre ad essere stata la fonte di nuovi sviluppi matematici, si è resa indispensabile in varie scienze e ha rappresentato il punto di partenza di una nuova arte per amore della scienza». E così, i corsi dei fiumi, le linee di costa, le galassie, la biologia… vengono descritti dalla geometria frattale, perché «le nuvole non sono sfere, le montagne non sono coni, le costiere non sono cerchi e la corteccia non è liscia, né la luce viaggia su una linea retta».

Il libro è molto breve, ma aiuta a entrare in questo argomento così intrigante: la lettura è stata davvero interessante e, per quanto non entri nello specifico con le definizioni matematiche, aiuta a capire cosa siano i frattali. La vicenda umana di Mandelbrot è affascinante ed è anche per questo che consiglio a tutti questa breve lettura: l’autore desiderava «una matematica più vicina alle forme del reale» e… è riuscito a costruirla!

Pubblicato in Libri
Giovedì, 28 Dicembre 2017 12:02

I frattali a fumetti

Ridurre il carburante per dirigere i satelliti artificiali verso nuove destinazioni, ridurre l’usura delle ruote delle locomotive, migliorare l’efficienza dei pacemaker cardiaci, produrre lavastoviglie più efficienti… tutte queste cose hanno un’origine comune: i frattali. Secondo la definizione di Mandelbrot: “Un frattale è una forma geometrica che può essere separata in parti, ciascuna delle quali è una versione a scala ridotta dell’intero.” Mandelbrot è il protagonista indiscusso del libro, visto che ci accompagna alla scoperta del mondo dei frattali. Un mondo caratterizzato da spigolosità e rugosità, esattamente come il mondo reale: in effetti, le forme perfette della geometria euclidea non bastano per descrivere la realtà. Secondo Wheeler, in futuro “nessuno che non abbia dimestichezza con i frattali sarà considerato scientificamente preparato”, perché, come dice Ian Stewart, i frattali “rivelano una nuova area della matematica che ha a che fare direttamente con lo studio della natura”.

Will Rood è un matematico che realizza animazioni frattali, Nigel Lesmoir-Gordon è regista e produttore di filmati a carattere scientifico: hanno in comune il documentario televisivo The colours of Infinity e, con l’illustratore Ralph Edney, hanno realizzato questo libretto che è al tempo stesso semplice e complesso, accattivante e capace di suscitare curiosità. In questo percorso esplorativo, che inizia con la storia di Mandelbrot, siamo introdotti con una certa semplicità nel mondo dei frattali: vista la sua completezza, visitiamo ogni ambito, dalla storia alle proprietà matematiche, dalla biologia allo studio dell’universo, dall’economia ai tumori, dal moto browniano all’informatica… ma, in nome della semplicità, si perde la profondità: il testo è quindi un modo per farci conoscere l’argomento ma anche per darci degli spunti e delle indicazioni per un ulteriore approfondimento. È come se, con questo libro, fossimo accompagnati alla porta di questo bellissimo parco e di fronte a noi esso si spalancasse in tutto il suo splendore: non abbiamo idea di cosa si nasconda in ogni angolo, perché dovremmo passare per ogni sentiero ed esplorare ogni anfratto. Ma solo la vista che ci è concessa dalla soglia è impagabile e ci permette di cogliere la non banalità di domande come: “Quant’è lunga la linea di costa della Gran Bretagna?”

Pubblicato in Libri
Sabato, 23 Agosto 2014 17:06

La sezione aurea

TRAMA:

L’antica Grecia è a ragione considerata la culla della nostra cultura: scienze, filosofia, arte, letteratura, ma soprattutto matematica, hanno trovato qui i propri natali. Platone ebbe il merito di scoprire i poliedri regolari, detti appunto platonici, e di costruire la realtà su di essi: questi sono legati indissolubilmente alla sezione aurea e, con ogni probabilità, l’interesse per il rapporto aureo è scaturito proprio dai tentativi di costruirli, anche se i primi a parlare di numeri irrazionali pare siano stati i pitagorici, nel VI sec. a.C.

Con la pubblicazione, nel 300 a.C., degli Elementi di Euclide, l’opera matematica più grandiosa e influente che sia mai stata scritta, il rapporto aureo comincia a diffondersi. Scavalcando gli arabi, che si occuparono principalmente di algebra, si arriva a Leonardo Fibonacci, che ha avuto il merito di diffondere in Europa le cifre indo-arabiche. Fibonacci usò consciamente il rapporto aureo nella soluzione di alcuni problemi e, formulando il quesito dei conigli, ne ha ampliato in modo decisivo la portata e le applicazioni, grazie al legame trovato successivamente da Keplero.

Nel Rinascimento, alcuni pittori hanno fornito contributi matematici di un certo rilievo: il più prolifico fu Piero della Francesca, con tre opere matematiche, con le quali dimostra che la prospettiva è fondata solidamente su basi scientifiche. Alcune delle questioni algebriche che affrontò furono riprese dal matematico Luca Pacioli, che, con il suo Compendio de divina proportione, presenta un riassunto dettagliato delle proprietà del rapporto aureo, portando a un rinnovato e diffuso interesse per la sezione aurea.

Il rapporto aureo divenne fondamentale anche per il funzionamento dell’universo, grazie al contributo di Keplero, che – trovato convincente il sistema copernicano – scelse di separare le orbite dei pianeti con i solidi platonici. Il modello era sbagliato, ma era sicuramente innovativo.

Nel mondo dell’arte, Paul Sérusier fece uso del rapporto aureo in alcune opere, soprattutto per “controllare, e in qualche caso disciplinare” le sue invenzioni, mentre Le Corbusier, che all’inizio aveva idee negative al riguardo, fece culminare la sua ricerca nel “Modulor”, che era in grado di conferire dimensioni armoniose a tutto, dalle maniglie delle porte agli spazi urbani. Numerosi autori hanno sostenuto che il rettangolo aureo sarebbe esteticamente più soddisfacente di tutti gli altri rettangoli, tanto che uno dei fondatori della moderna psicologia, Gustav Theodor Fechner decise di effettuare degli esperimenti, negli anni Sessanta dell’Ottocento, per verificarlo. Nel secolo scorso, ne sono stati sottolineati l’ingenuità e i difetti metodologici, visto che “non sembra esserci alcuna base razionale della teoria estetica che considera la sezione aurea un ingrediente decisivo della bellezza delle forme visive”. Anche in ambito musicale, le speculazioni riguardanti il rapporto aureo sono numerose: accanto a usi incontestabili del rapporto aureo, ve ne sono altri dovuti all’immaginazione dei loro scopritori. Tutti i tentativi di svelare la presenza di fin varie creazioni artistiche, dalla pittura alla musica alla poesia, si basano sul presupposto che esista un canone di bellezza ideale, ma la storia ci dice che non sempre alla base della bellezza c’è la sezione aurea.

Per realizzare le tassellature del piano, si è sempre saputo che il pentagono – il poligono più legato al rapporto aureo – non è adatto a ricoprire una superficie in modo completo e regolare. Nel 1974, Roger Penrose, fisico di Oxford, ha scoperto due schemi fondamentali di intarsio per coprire una superficie, sfruttando una simmetria quintupla, ovvero basandosi sul rapporto aureo. Apparentemente questi suoi studi dovevano restare confinati nell’ambito della matematica ricreativa, ma nel 1984 l’ingegnere israeliano Dany Schectman ha trovato una lega di alluminio con simmetria quintupla.

Nell’ultimo capitolo, l’autore si concentra sulle diverse interpretazioni della matematica: tra la visione della matematica come dotata di un’esistenza indipendente dal pensiero umano e quella di una matematica inesistente al di fuori del pensiero, l’autore sostiene che solo gli assiomi sono frutto di una scelta umana, ma dopo di essi la matematica gode in un’esistenza autonoma. “Il rapporto aureo è un prodotto della geometria, un’invenzione umana. Ma gli uomini non immaginavano in quale magico regno di fate ed elfi quel prodotto li avrebbe portati.”

 

COMMENTO:

Storia della matematica, arte, musica, poesia sono gli ingredienti di questo prezioso libro, nel quale la sezione aurea non viene solo definita, ma ne viene indagata la presenza nelle opere d’arte più famose e nei posti meno comuni, come i quasi-cristalli. Proprio il carattere eclettico del libro permette di incontrare i gusti di tutti i lettori, non solo degli appassionati di matematica ed è in particolare consigliato a tutti coloro che si interessano di arte. Il lettore viene guidato partendo dai contenuti più semplici, come il significato dei numeri per i pitagorici, fino ad arrivare ai frattali, con la loro bellezza e complessità. Peccato manchino le immagini a colori, almeno nell’edizione della Rizzoli.

Pubblicato in Libri