Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Martedì, 11 Agosto 2015 16:26

Un biglietto di sola andata

TRAMA:

Bruno Codenotti ci invita nel mondo della logica e della teoria dei giochi attraverso le vicende di Aldo, esemplare di Homo Rationalis, che “agisce sempre con uno scopo e logicamente e ha la capacità di calcolare tutto ciò che è necessario per raggiungere il proprio scopo”. L’alunno che ogni insegnante di matematica vorrebbe? Forse no, considerati gli sviluppi della vicenda, quando Aldo si finge uno studente di un Liceo Sperimentale.

Il libro di Codenotti nasce dalle conferenze divulgative tenute dall’autore e dal confronto continuo con gli insegnanti e gli alunni incontrati nel suo cammino. Le vicende di Aldo sono ben pensate, con quesiti e problemi ispirati dagli scritti di Raymond Smullyan, Henry Dudeney, George Boolos e Martin Gardner. Il lettore è invitato nel mondo della logica, senza doversi scontrare con il “formalismi che rappresentano un grosso ostacolo alla divulgazione”. Non solo, è l’autore stesso a offrirci una scappatoia nella prefazione: se i problemi che Aldo affronta nel corso della narrazione ci paiono troppo impegnativi, abbiamo la possibilità di leggere immediatamente la sua soluzione oppure di passare oltre, visto che i brani in questione sono scritti con un carattere diverso. Questa scelta non compromette la comprensione degli eventi successivi, ma scegliere di fare un po’ di fatica per affrontarli significa darsi la possibilità di “entrare più in profondità nelle tematiche, a prezzo di un piccolo sforzo.”

Le vicende di Aldo si svolgono in tre luoghi diversi: nel nostro mondo, ovvero nel mondo dell’Homo Sapiens, nel mondo onirico dell’Isola di VeroFalso e nel mondo di Logicolandia. Nella nostra realtà, Aldo incontra soprattutto i giovani, perché, come gli viene ricordato, essi “sono aperti a nuove amicizie e fanno poche domande”. Durante i suoi sogni, Aldo approda all’Isola di VeroFalso dove l’indagine sulla verità gli permette anche di capire meglio se stesso. E nel mondo di Logicolandia, Aldo è nel suo elemento, ma non illudiamoci: un mondo perfettamente razionale non ci regalerebbe delle elezioni perfettamente democratiche, come ci ricorda il paradosso di Condorcet e non ci toglierebbe il cruccio di certe decisioni apparentemente assurde che vengono prese sulla base del paradosso di Braess. Infine, nemmeno la giustizia sarebbe garantita, se dovessimo fare i conti con il dilemma del prigioniero.

 

COMMENTO:

Questo libro è una vera miniera di problemi e paradossi e la sua lettura è consigliata a tutti: a coloro che hanno voglia di misurarsi con alcuni problemi di logica, ma anche a quelli che salteranno a piè pari i problemi più complessi, perché troveranno comunque il modo di rendersi conto della complessità e dei paradossi che albergano nel mondo della logica e con i quali ci scontriamo nella vita di tutti i giorni. Le vignette di Eros Pedrini alleggeriscono la narrazione, che è semplice e alla portata di tutti.

Il libro realizza davvero ciò che il sottotitolo ci ha promesso: si tratta di un “invito alla logica e alla teoria dei giochi” e certi inviti non si possono proprio rifiutare!

Pubblicato in Libri
Martedì, 06 Agosto 2013 08:08

Mate-magica

TRAMA: 
Questo libro è una raccolta di alcuni dei giochi presentati nel De viribus quantitatis di Luca Pacioli: codice cartaceo composto da 306 carte, scritto in volgare ma con l’inclusione di latinismi. Gli autori del presente libro hanno scelto i giochi delle prime due parti del libro e li hanno riorganizzati in sei gruppi, senza rispettare l’ordine cronologico di Pacioli, ma dando indicazioni precise nel testo per ricostruire la posizione nell’originale. I sei capitoli sono i seguenti:
1. Giochi matemagici: è la parte più corposa del libro – ne occupa circa la metà – e contiene 37 giochi. I giochi possono essere eseguiti con monete, dadi e carte e si basano su principi o regolarità matematiche che vengono ricostruite accuratamente dagli autori mediante delle equazioni. Ci sono giochi nei quali si invitano gli spettatori a pensare a dei numeri e, attraverso una serie di operazioni aritmetiche che vengono fatte svolgere, il prestigiatore riesce a risalire ai numeri stessi, dando l’illusione di aver letto nel pensiero. Con la moderna matematica, vediamo che sono semplici equazioni, anche se non facilmente intuibili per la dinamica del gioco. Certo è che al prestigiatore è richiesta, oltre ad una buona rapidità di calcolo, anche un’ottima memoria e, a tal proposito, Pacioli suggerisce alcuni trucchi.
2. Rompicapo e giochi topologici: da questo punto di vista, il lavoro del Pacioli è davvero all’avanguardia. Il suo libro è la prima compilazione di giochi topologici. Gli autori trattano i principali giochi, con l’aggiunta di figure di riferimento, ma reperite altrove, perché per quanto la descrizione del Pacioli sia precisa e comprensibile, senza figure diventa difficile seguire questi puzzle topologici che a prima vista sembrano impossibili.
3. Giochi di prestigio basati su principi fisici: il principio alla base dei quesiti presentati è molto semplice, ma dimostra la profonda conoscenza di Pacioli. Si tratta infatti di conoscere il baricentro di un insieme di oggetti, in relazione alle reazioni vincolari agenti sul sistema. Più volte Pacioli richiama l’attenzione sulla necessità di non svelare il trucco e, in questo caso, invita il prestigiatore a nascondere alla vista dello spettatore le azioni che si devono compiere per risolvere il rompicapo. 
4. Illusioni sensoriali: l’illusione ottica presentata è forse frutto degli studi della prospettiva che si stavano svolgendo in quel periodo. La seconda illusione sensoriale, invece, è dovuta alla complessità dei segnali trasmessi al cervello.
5. Scommesse: sono presentate due scommesse. La prima viene attribuita da Pacioli a Filippo Brunelleschi e riguarda l’abilità di mettere in equilibrio un uovo. La seconda, invece, riguarda il lancio di un ago cercando di infilzare una tavola di legno morbido posta a una certa distanza. È possibile centrare il bersaglio semplicemente inserendo del filo nella cruna: in questo modo, il filo ha una funzione stabilizzatrice che ne regolarizza la traiettoria.
6. Riscontri tra il foglio 958r del Codice Atlantico e il De viribus quantitatis: Leonardo da Vinci e Pacioli erano legati da una profonda amicizia e avevano un bel rapporto di stima reciproca, tant’è che le figure geometriche che compaiono nel De divina proportione di Luca Pacioli sono opera di Leonardo ed è molto probabile che sia stato Pacioli a istruire Leonardo in matematica. In ogni caso, alcuni dei giochi proposti nel Codice Atlantico compaiono anche nel De viribus quantitatis, con una spiegazione del tutto simile.
 
.
 
COMMENTO:
Matematica e magia si contendono il ruolo del protagonista in questo libro, forse proprio grazie al fatto che gli autori sono un prestigiatore e due scienziati e parlano del lavoro di Luca Pacioli, un matematico poliedrico, o forse perché non si può essere prestigiatori senza conoscere la matematica e chi apprezza la matematica sa che ha degli aspetti magici. Luca Pacioli sottolinea che è facile ingannare con le illusioni i “rozzi”, gli “idioti” e le donne – in quanto inesperte di matematica e quindi non in grado di capire – ma io personalmente ritengo che la dimensione magica della matematica sia più evidente per coloro che la conoscono e la apprezzano. Questo libro può essere considerato un ponte, gettato dal XV secolo da Pacioli fino a noi, oppure gettato dalla matematica e dagli autori verso tutti gli scettici, che – con questa “autentica avventura intellettuale” – possono appassionarsi. La stessa Antonietta Mira nell’introduzione ci dice: “Attraverso questo lavoro si desidera offrire a prestigiatori, matematici, appassionati, dilettanti o anche solo curiosi di magia, un breve compendio e un’istantanea della prestigiazione nell’Italia del XV secolo.”
Pubblicato in Libri
TRAMA: 
Nel 2002, David Goodhart, direttore di Prospect, invitò Stewart a tenere una rubrica di enigmi matematici sulla sua rivista. Doveva essere “qualcosa che rappresentasse una sfida intellettuale, significativo sotto l’aspetto matematico, ma anche accessibile a tutti”. Nacque così la rubrica «Enigmi e rompicapi»: con qualche personaggio dal nome originale (ad esempio: il greco Appesanphilo e i monaci numerali di Unditropp con il fondatore P. Tagora), una storiella simpatica – “da sempre si è cercato di rendere la matematica più appetitosa ricorrendo a una buona spolverata di narrativa” – e importanti questioni matematiche che compaiono sotto mentite spoglie. Con carta, matita e un po’ di cervello – “questo è un libro per esercitare quel gadget che ci troviamo fra le orecchie” – possiamo risolvere dei vecchi classici rivisitati in chiave moderna, alcuni esercizi di matematica e alcune trovate dell’autore.
 
.
 
COMMENTO:
Buon divertimento a tutti coloro che ritengono che la matematica sia “il diamante nella corona dell’intelletto umano, la ciliegina sulla torta del sapere, la granella di nocciola nel cioccolato della scienza”. Ma anche a coloro che hanno voglia di spremere un po’ le meningi, per mettersi alla prova o, semplicemente, per far impazzire gli amici riproponendo questi simpatici enigmi.
Pubblicato in Libri
Venerdì, 02 Agosto 2013 21:15

Il matematico si diverte

TRAMA: 
«In fondo sono proprio gli indovinelli e gli enigmi i modi più indolori e stimolanti di avvicinare ragionamenti in cui la matematica è nascosta dietro le quinte, e non può dunque spaventare o preoccupare, perché non se ne percepisce neppure la presenza.» Con queste parole, Piergiorgio Odifreddi – nell’interessante prefazione – ci parla della ricchezza insita negli enigmi e nei giochi matematici presentati nel libro. E, in effetti, lo stesso Peiretti ci fornisce tre motivazioni che l’hanno spinto a scrivere questo libro: 
1. “Per portare in primo piano il lato divertente della matematica”. E il divertimento non manca, tra le pagine di questo libro: basta lasciarsi sfidare dai giochi proposti e provare a risolverli per conto proprio.
2. “Per dimostrare come attraverso il gioco si arrivi direttamente alla matematica”. Infatti, molti degli autori di giochi erano a loro volta matematici.
3. Per dimostrare come la matematica “sia essa stessa un gioco”. Affermazione sicuramente discutibile per molti, ma che dovrebbe diventare una profonda verità soprattutto per gli insegnanti di matematica: vivendola come gioco, forse sarebbe più facile trasmetterne il lato divertente.
Per questi motivi, “succede talvolta che il matematico parta da un semplice gioco mediante il quale arriva poi a scoprire nuovi teoremi e nuove, fondamentali, teorie”. 
Ogni capitolo, dedicato a un autore di giochi matematici, è strutturato in modo da presentarci innanzi tutto l’autore dei giochi, con alcune notizie biografiche e curiosità che lo riguardano, poi ci sono alcune importanti scoperte, alcuni giochi matematici proposti al lettore, le soluzioni e, eventualmente, delle appendici in cui i problemi vengono ulteriormente approfonditi o risolti matematicamente. Alla conclusione del capitolo, possiamo trovare un’ampia bibliografia, per approfondire ulteriormente l’argomento.
Gli autori proposti sono 18 e sono disposti in ordine cronologico: si comincia con AHMES, uno scriba dell’Antico Egitto, divenuto famoso per il papiro di Rhind, che ha copiato “al tempo del re dell’Alto e del Basso Egitto Nemaatre”. Il secondo capitolo è dedicato a PITAGORA e all’aritmogeometria, il terzo a ARCHIMEDE, il più grande matematico dell’antichità, e vengono proposti alcuni interessanti giochi geometrici; nel quarto capitolo, troviamo ALCUINO, monaco e poeta, vissuto nell’VIII secolo, autore della prima raccolta in lingua latina di problemi divertenti, noto ai più per il problema della capra e dei cavoli. BACHET, vissuto nel XVII secolo, è un personaggio minore nella storia della matematica, ma di grande importanza nella storia dei giochi. Il sesto capitolo è dedicato al grande EULERO, che per il divertimento e l’istruzione di figli e nipoti proponeva problemi matematici che dimostrano una grande capacità divulgativa: i numeri primi e la topologia sono gli argomenti dei giochi proposti da Peiretti. MÖBIUS, che scoprì il proprio amore per la matematica grazie a Gauss, è ricordato soprattutto per il suo anello, dal quale possono nascere parecchi problemi interessanti. LEWIS CARROLL, celebre come autore di “Alice nel paese delle meraviglie”, non è un grande matematico, ma ha una buona conoscenza della materia. SAM LOYD è stato riconosciuto come il miglior enigmista d’America: è noto soprattutto per il Gioco del 15 e bellissima è la rassegna di problemi divertenti proposta da Peiretti. Interessante la citazione che conclude il capitolo: “Quello che si studia con diletto non sarà mai più dimenticato, ma la conoscenza non si può mettere in testa a forza. L’insegnante non deve insegnare regole a memoria; ogni cosa dev’essere spiegata in modo tale che gli studenti possano riformulare le regole nel proprio linguaggio. L’insegnante che insegna soltanto regole sarà bravo unicamente per addestrare pappagalli.” LUCAS, ottimo matematico, è noto per aver inventato il gioco della Torre di Hanoi, reperibile in qualsiasi negozio di giochi. BALL, matematico, è noto per la Mathematical Recreations and Essays, un’enciclopedia dei giochi matematici, ancora attuale e di grande interesse. Nel dodicesimo capitolo, si parla di DUDENEY, che – secondo Martin Gardner – “potrebbe essere considerato il più grande enigmista che sia mai esistito”: il suo libro più noto è The Canterbury Puzzles, che ha come protagonisti i pellegrini dei Canterbury Tales di Chaucer. HEIN è un poeta e matematico danese, noto – oltre che per i suoi aforismi contro il nazismo – per il Cubo Soma, un gioco matematico formato da sette pezzi con i quali si deve ricostruire un cubo. Il quattordicesimo capitolo è dedicato a MARTIN GARDNER, il più grande esperto in giochi matematici del XX secolo, autore di oltre un centinaio di libri e di migliaia di articoli dedicati a giochi e problemi divertenti di matematica. FEYNMAN è stato uno degli scienziati più popolari: ha partecipato al progetto Manhattan e ha vinto il premio Nobel nel 1965 per i suoi studi sull’elettrodinamica quantistica. Nel capitolo a lui dedicato, sono descritte le strisce di carta note come esaflexagoni, portate al successo da Gardner, e l’intrigante puzzle di Feynman. PENROSE, uno dei più noti scienziati inglesi, è sempre stato affascinato dalle tassellature, in particolare da quelle non periodiche, che hanno permesso di chiarire la disposizione degli atomi nei quasicristalli. GOLOMB, matematico e ingegnere, è diventato popolare per i suoi studi sui polimini, noti ai più grazie al videogioco di Tetris. Il libro si conclude con i numeri surreali di CONWAY, uno dei più grandi matematici viventi: egli considera la matematica “il più bel gioco inventato dall’uomo”. Uno dei giochi più affascinanti da lui inventato è il Gioco della Vita, diventato popolare grazie alle versioni per computer.
 
COMMENTO:
Lettura stimolante, che offre un vasto repertorio di giochi con i quali misurarsi. Certo, non si può leggere come un romanzo, perché, come ci dice l’autore stesso: «È bene tener presente che per capire la matematica, anche soltanto di gioco, non è sufficiente “leggere”, ma è necessario “fare” matematica, con esercizi e riflessioni personali.»
Purtroppo, nel libro sono presenti numerosi errori di stampa, che possono indurre in errore nella soluzione dei giochi. Inoltre, alcune soluzioni (poche, per la verità) non sono spiegate: viene dato solamente il risultato. Nonostante questo, la lettura è consigliatissima a tutti!
Pubblicato in Libri
Giovedì, 01 Agosto 2013 16:02

Giochi matematici del medioevo

TRAMA:
Non tutti sanno che nel medioevo la matematica si diffonde in Italia grazie ai mercanti che portano dalle terre lontane non solo le droghe e l’oro, ma anche le idee migliori di tutti i popoli. Leonardo Pisano, detto il Fibonacci, è, per l’appunto, un mercante, ma anche il principale matematico italiano del medioevo. Con il Liber Abaci nel 1202, presenta innanzi tutto le nove cifre indo-arabiche e lo zero, ma anche le operazioni sugli interi e le frazioni, i criteri di divisibilità, la ricerca del massimo comun divisore e del minimo comune multiplo, le regole di acquisto e vendita, gli scambi monetari, le regole del tre semplice e del tre composto, lo studio delle equazioni algebriche quadratiche… 
Il Liber Abaci è denso di problemi, come quello più famoso: “Determinare quante coppie di conigli saranno prodotte in un anno, da una sola coppia che diventa produttiva a partire dal secondo mese”. L’antologia è stata scritta da un mercante (matematico) per altri mercanti, che hanno sì bisogno di conoscenze tecniche, senza però mai perdere di vista l’utile e il concreto: la maggior parte dei problemi, infatti, è dedicata a questioni di pratica mercantile.
Il presente libro è una raccolta di alcuni dei problemi di Fibonacci (sessantaquattro per la precisione): in ogni capitolo compare il testo del problema, una nota nella quale si danno indicazioni circa l’ubicazione del problema nell’opera o di ulteriori traduzioni dal linguaggio utilizzato da Fibonacci al linguaggio più moderno e la soluzione. La soluzione può essere presentata utilizzando i moderni metodi algebrici, oppure attraverso il procedimento di Fibonacci, spesso più originale, meno monotono e più geniale.
 
COMMENTO:
Il consiglio è quello di leggere con attenzione la prefazione di Pietro Nastasi “Leonardo Pisano detto Fibonacci: un commerciante matematico ai tempi di Federico II” e l’introduzione e poi di buttarsi a capofitto nei problemi, cercando di trovare una propria strategia e utilizzando la soluzione proposta dal testo come controllo del procedimento.
Il libro è stimolante, perché invita a trovare la propria strada nella soluzione dei problemi. Alcuni sono semplici, soprattutto se si affrontano con i moderni metodi algebrici, altri sono più complessi e si fatica a procedere, ma tutti sono interessanti e offrono uno spaccato dei costumi dell’epoca. Le spiegazioni di Fibonacci sono precise e, come dice il curatore, viene in mente un insegnante alle prese con uno studente che ha un ritmo di apprendimento lento. E Fibonacci mostra di essere un valido insegnante…
Come dice il curatore, Nando Geronimi: Buona lettura, dunque: agli appassionati di giochi matematici, per la bellezza di alcuni problemi; agli appassionati di storia della matematica, per la novità della documentazione; agli insegnanti delle scuole secondarie, per le suggestioni didattiche che via via accompagnano i testi e le soluzioni presentati. A tutti, buona lettura!
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:51

Una storia ingarbugliata

TRAMA:
“Questa storia è stata pubblicata a puntate nel The Monthly racket, a partire dall’aprile del 1880.” Le puntate sono dieci, dieci garbugli, o capitoli, e contengono quesiti di natura algebrica o logica e sono stati inseriti “per divertire, ed eventualmente per istruire, i gentili lettori della rivista”. Si può procedere nella lettura dei garbugli ordinatamente, oppure in ordine sparso, visto che non sono collegati gli uni agli altri, nel senso che sono indipendenti, anche se alcuni personaggi sono protagonisti di più garbugli. Il lettore è invitato a risolvere i garbugli per proprio conto, ma in ogni caso in appendice sono riportate le soluzioni.
 
COMMENTO:
Il testo è stimolante, visto l’invito implicito rivolto al lettore ad impegnarsi a risolvere i quesiti. Per questo motivo, è necessario prestare la massima attenzione durante la lettura, per poter cogliere tutti gli indizi forniti dall’autore. 
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:19

L'uomo che sapeva contare

TRAMA:
Un giovane persiano di nome Beremiz Samir, nato nel villaggio di Khoi ai piedi del monte Ararat, lavorava come pastore al servizio di un ricco signore di Khamat. Per timore di perdere qualche elemento del gregge, Beremiz contava ogni giorno, più volte al giorno, tutte le pecore e divenne quindi molto abile nel contare, tanto da poter contare gli uccelli di uno stormo, le api di uno sciame, le formiche di un formicaio, con una sola occhiata. Per questo motivo, il padrone lo mise a sovrintendere alla vendita dei datteri e, dopo quasi dieci anni di servizio, gli concesse quattro mesi di riposo. Egli decise di recarsi a Baghdad per visitare i parenti e ammirare le moschee e i palazzi.
Durante questo viaggio incontrò Hanak Tade Maia, voce narrante della vicenda, nonché suo fedele amico. Durante il viaggio, Beremiz risolse i quesiti matematici che gli venivano via via proposti e in questo modo riuscì a ottenere numerosi privilegi: un cammello, un magnifico anello d’oro con pietre preziose nere, un turbante blu… diventò anche segretario del visir Ibrahim Maluf!
La sua fama si diffuse sempre più velocemente e lo sceicco Iezid Abul Hamid gli chiese di insegnare le proprietà dei numeri a sua figlia Telassim, per preservarla dalle tragiche disgrazie che un famoso astrologo aveva previsto per lei al momento della sua nascita. Beremiz, che in passato fu istruito da un vecchio derviscio di nome Nô-Elim, al quale aveva salvato la vita durante una violenta tempesta di sabbia, accettò volentieri. Cominciarono così le lezioni: una spessa e pesante tenda di velluto rosso che pendeva dal soffitto fino al pavimento impediva a Beremiz di vedere la sua allieva, che si mostrava in ogni caso attenta e intelligente. 
Beremiz si guadagnò presto anche i favori del Califfo, nonostante l’invidia di alcuni cortigiani che tentarono più volte di metterlo in cattiva luce e di tendergli agguati. 
La prima sera dopo il Ramadan, il Califfo preparò una strana sorpresa per Beremiz: avrebbe dovuto confrontarsi pubblicamente con sette matematici. Poco prima della prova, lo sceicco Iezid intervenne per riportare a Beremiz l’anello che aveva smarrito durante una lezione a Telassim, al quale è legato un biglietto da parte di Telassim stessa, e un tappeto preparato dalla donna, sul quale erano stati ricamati alcuni versi d’amore che solo Beremiz potesse capire. Beremiz rispose senza problemi a tutte le domande e al termine il Califfo gli propose di richiedere qualsiasi cosa volesse. Egli chiese la mano di Telassim, ma prima di concedergliela, il Califfo gli propose un ultimo quesito, al quale Beremiz rispose positivamente. 
Nel 1258, i barbari assediarono la città di Baghdad: lo sceicco Iezid morì in battaglia, il Califfo fu preso prigioniero e decapitato. La città fu saccheggiata e rasa al suolo. Ma Beremiz, la sua famiglia e il suo fedele amico erano ben lontani: a Costantinopoli, con sua moglie e i loro tre figli, Beremiz viveva felice.
 
COMMENTO:
Una favola con la matematica come protagonista. E l’Uomo che Sapeva Contare incarna proprio tutte le caratteristiche del matematico: intelligente, con mille risorse e la risposta pronta, ma soprattutto al di sopra di ogni immoralità.
Una delle ricchezze del libro è data dai giochi logici che percorrono ogni episodio: in questo modo, chi affronta la lettura può scegliere se leggere direttamente le risposte dell’Uomo che Sapeva Contare o interrompere per un momento la lettura, tentando di rispondere per proprio conto ai quesiti.
Pubblicato in Libri
Mercoledì, 31 Luglio 2013 19:54

Il computer di Dio

TRAMA:
Molti stentano a credere che la matematica possa essere accomunata alle discipline umanistiche, ma in realtà sono due visioni complementari di una stessa realtà. La matematica collega i due mondi, essendo umanistica nei contenuti (descrive e inventa mondi possibili) e scientifica nel metodo (in quanto usa la logica). Inoltre la matematica è il linguaggio della scienza e, per questo motivo, del mondo contemporaneo.
Domandarci esplicitamente dove stia andando la matematica significa domandarsi in realtà dove stiano andando le scienze e, con esse, il mondo tecnologico e la civiltà occidentale. 
Nel Novecento, la matematica è andata incontro a una produzione sterminata e verrebbe quasi da pensare che non sia rimasto più nulla da dimostrare, mentre in realtà ci sono molte branche nuove della matematica, come la teoria dei giochi e la teoria della complessità. 
I campi esplorati in termini matematici sono: politica, religione, arte, letteratura, giochi, filosofia, logica, aritmetica, geometria, scienza e tecnica.
 
COMMENTO:
Un libro interessante, anche se non sempre di facile lettura. Ottimo per gli studenti, soprattutto in vista dell'esame di stato, visto che crea presenta numerosi collegamenti tra la matematica e le altre discipline. Accessibile anche per chi non ha una preparazione matematica di elevato livello.
Pubblicato in Libri