Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Libri

Libri (219)

Mercoledì, 31 Luglio 2013 21:16

Il numero

TRAMA:
CAPITOLO PRIMO – Genesi dei sistemi di numerazione
Dal contare come stabilire una corrispondenza biunivoca al contare come raggruppare: interessante la storia della nascita del numero, attraverso i sistemi di numerazione arcaici degli Egiziani, dei Babilonesi, dei Greci e dei Maya e quelli più moderni degli Indiani e degli Arabi.
 
CAPITOLO SECONDO – Sistemi posizionali di numerazione
Capitolo un po’ più complesso, dedicato allo studio delle rappresentazioni posizionali dei numeri attraverso le rappresentazioni algebriche dei codici. (interessante e curiosa la moltiplicazione araba, anche se non è spiegato il meccanismo).
 
CAPITOLO TERZO – Divisibilità e sistemi di numerazione
A partire dal teorema fondamentale dell’aritmetica, il capitolo si sviluppa con la dimostrazione della periodicità della rappresentazione dei numeri razionali in basi periodiche. Complesso dal punto di vista della comprensione: alcuni concetti sono espressi in modo eccessivamente e inutilmente complicato. In questo capitolo si fa riferimento anche al teorema di Eulero, ai numeri ciclici e ai primi di Mersenne. (curiosa la prova di divisibilità di Pascal)
 
CAPITOLO QUARTO – Numeri reali
Si comincia con il dominio di integrità dei numeri razionali, si passa attraverso il metodo assiomatico e la commensurabilità, con ampio riferimento ai pitagorici e al teorema di Pitagora. Si arriva al teorema di Fermat e alla dimostrazione dell’incommensurabilità di , oltre alla dimostrazione dell’impossibilità fisica di rappresentarla. Il capitolo si conclude con la presentazione dei tre problemi irrisolvibili dell’antichità, costruibili solamente con riga e compasso.
 
CAPITOLO QUINTO – Frazioni continue
Innanzi tutto viene presentato l’algoritmo euclideo per il calcolo del MCD interessante perché iterativo, carattere tipico proprio delle frazioni continue.
 
CAPITOLO SESTO – Fratture
A partire dal Piano di Argand, o semplicemente piano complesso, il capitolo si snoda attraverso la rappresentazione geometrica dei numeri e dei nodi primi (si definiscono anche i numeri primi gaussiani); le fratture sono un modo per rappresentare i numeri irrazionali, che nessuna retta con pendenza razionale può incontrare: ovvero è un ipotetico raggio luminoso infinitamente sottile che si propaga all’infinito senza incontrare un nodo. Nello sviluppo del capitolo viene rivisitato anche il calcolo del MCD.
 
CAPITOLO SETTIMO – Infinito 
Sicuramente il capitolo più interessante, anche se costituisce solo un assaggio dell’argomento, essendo poco sviluppato. “La strada per l’infinito è disseminata di paradossi, e occorre prestare grande attenzione quando si estrapola un ragionamento da qui a lì. Ciò può sembrare una naturale estensione di leggi e regole inerenti all’ambito della nostra più prossima sfera d’azione, in altre parole, i primi (e pochi!) numeri interi, talvolta può portare a irrisolvibili contraddizioni”. È il caso delle serie convergenti e dei paradossi sulle serie infinite, dell’Hotel Hilbert e dei paradossi di Zenone, dell’Horror infiniti dei Greci, al quale il metodo di esaustione di Eudosso si oppone. Solo Cantor parla di infinito attuale, contro l’infinito potenziale di Aristotele, solo Cantor cerca di numerare i vari tipi di infinito, di confrontarli l’uno con l’altro.
 
COMMENTO:
Libro a tratti molto difficile, inutilmente complicato laddove i calcoli avrebbero potuto essere presentati più semplicemente. Interessante e scorrevole il primo capitolo, sulla genesi dei sistemi di numerazione, facile il quarto, sui numeri reali, molto interessante il quinto, sulle frazioni continue e riduttivo il settimo, sull’infinito.
Mercoledì, 31 Luglio 2013 21:15

La quarta dimensione

TRAMA:
Il racconto fantastico Flatlandia, pubblicato nel 1884, narra la storia di un Quadrato che intraprende un viaggio nella terza dimensione. Rucker prende spunto da questo per parlare della Quarta Dimensione, attraverso un’analogia: la terza dimensione sta alla seconda, come la quarta sta alla terza. Il libro ha come fil rouge le Nuove avventure del Quadrato: in queste Rucker immagina che il Quadrato di Flatlandia guidi il lettore alla scoperta della quarta dimensione. 
Innanzi tutto Rucker riconosce che ogni oggetto di nD divide lo spazio (n + 1)D in 2 regioni: il filosofo dell’iperspazio Hinton propone i termini anà e katà per le regioni in cui il nostro spazio 3D divide quello 4D. «Tanto per avere un riferimento, possiamo immaginare che rispetto al nostro spazio il paradiso sia anà e l’inferno katà.»
La quarta dimensione è un’idea molto giovane: risale a poco prima della metà dell’Ottocento ed il primo filosofo a parlarne seriamente fu Kant. Nel tardo Ottocento era molto diffuso lo spiritismo e per trovare una spiegazione alla capacità di manifestarsi degli spiriti, venne ipotizzato che si trovassero nella quarta dimensione. Zöllner, professore di astronomia all’Università di Lipsia, diede vera diffusione a quest’idea e si illuse anche di averla dimostrata attraverso degli esperimenti. «L’effetto principale del lavoro di Zöllner fu che la quarta dimensione cominciò ad avere una reputazione sospetta e antiscientifica.». 
Il primo a toccare in qualche modo la Quarta dimensione fu Hinton, che riuscì a «prendere un oggetto 3D e vederne le parti semplicemente in termini di “che cosa è vicino a che cos’altro”, liberandosi quindi dai nostri tipici concetti spaziali di davanti/dietro e sopra/sotto.»
Rucker rivisita i concetti di spazio e tempo: «Siamo avvezzi a pensare che l’universo sia fatto di grumi di materia fluttuanti nello spazio vuoto: la materia è qualche cosa e lo spazio è il nulla. Ma è davvero una visione corretta?» A partire dall’esperimento di Michelson e Morley del 1887, Rucker si addentra nella teoria della relatività di Einstein. Dopo aver specificato che non si può determinare la forma dello spazio, in quanto ogni nostra ipotesi parte dall’idea che la curvatura dello spazio sia una costante, mentre «lo spazio potrebbe avere una forma ben più strana di quanto crediamo», Rucker tratta poi delle porte magiche su altri mondi, oggetti che ricorrono in tutta la letteratura fantastica. 
Torniamo al mondo di Flatlandia: immaginare un universo parallelo a quello del Quadrato è semplice, basta immaginare infiniti piani paralleli. Non è difficile nemmeno immaginare una porta magica che colleghi fra loro i due universi: si può pensare ad esempio ad una specie di scivolo che colleghi fra loro i due piani. Allo stesso modo, per analogia, dovremmo riuscire ad immaginare una porta che colleghi fra loro due diversi spazi tridimensionali, per forza di cose una porta che esista nella quarta dimensione. «Che aspetto avrebbe un siffatto tunnel iperspaziale? Il suo ingresso apparirebbe come una sfera contenente un altro universo completo, incredibilmente compresso e distorto. Se vi buttaste a capofitto in questa sfera, avreste proprio la sensazione di attraversarla. Ma poi, guardandovi intorno, vi rendereste conto di trovarvi nell’altro universo e voltandovi a guardare verso il tunnel iperspaziale vedreste una sfera che sembrerebbe contenere tutto il nostro universo originale, incredibilmente compresso e distorto.» 
E per quanto riguarda il tempo? Innanzi tutto, a partire dalla teoria della relatività, si è cominciato a parlare di spazio-tempo costituito da eventi: «Un “evento” è proprio ciò che la parola esprime: un dato luogo in un dato momento.» Il tempo, in quest’ottica, potrebbe essere una delle dimensioni superiori. 
Viaggiare nel tempo darebbe luogo a paradossi assurdi, eppure è da epoche remote che gli uomini sognano di viaggiare liberamente attraverso di esso. Infatti, i viaggi nel tempo e i viaggi FTL (faster than light) «promettono l’affrancamento da tre pastoie tipiche della condizione umana. Il viaggio nel tempo ci libera dal cieco e malefico dispotismo del tempo e dalla sterile nostalgia. Il viaggio FTL ci affranca dall’ostinata tirannia della distanza fisica, dalle fastidiose necessità del viaggio effettivo. I viaggi nei mondi alternativi ci liberano dal dover occupare una data posizione nella società e dalla necessità di accettare il mondo così com’è.» In altre parole, l’esistenza di questi viaggi ci permetterebbe di cambiare radicalmente la nostra vita. 
Rucker si esprime poi contro la telepatia: molti eventi sono collegati da causa ed effetto, altri invece no, sembrano coincidenze. C.G. Jung, psicologo, introduce il termine di sincronicità proprio per descrivere questi eventi: con questo termine, infatti, designa una “connessione acausale”. 
Nell’ultimo capitolo, Rucker cerca di rispondere alla domanda “Che cos’è la realtà?”. «Se facciamo uno sforzo sincero per descrivere il mondo come veramente lo sperimentiamo, allora esso diventa infinitamente più complicato di una semplice immagine 3D. Si ha la sensazione che, quanto più ci immergiamo nella natura della realtà, tante più cose scopriamo. Lungi dall’essere limitato, il mondo è, al contrario, di una ricchezza inesauribile.»
 
COMMENTO:
Scorrevole per chi abbia già conoscenze nel campo. In ogni caso, come tutti i libri al riguardo, può sembrare ai limiti del fantascientifico (non per nulla Rucker ha scritto anche libri di fantascienza). Il libro offre un’interessante carrellata sulla storia della quarta dimensione, presentando personaggi importanti ed influenti. 
Il tutto parte dal racconto fantastico di Flatlandia, perciò è necessario aver letto prima tale racconto, altrimenti si farebbe fatica a capirlo.
Mercoledì, 31 Luglio 2013 21:14

L'uomo che vide l'infinito

TRAMA:
Ramanujan fu un eccentrico personaggio: nato in India nel 1887, si innamorò della matematica nel 1903 e, irretito dalla matematica pura, perse interesse per tutto il resto: gli venne così tolta la borsa di studio che aveva ottenuto.
La sua famiglia era ai limiti della miseria e di tanto in tanto Ramanujan pativa anche la fame. Cercò di arrangiarsi con qualche ripetizione, ma non era abile come insegnante. Cominciò a riportare i suoi appunti in alcuni quaderni che dimostrano il suo sviluppo fuori dalle convenzioni. I genitori lo sopportarono a lungo, ma alla fine si irritarono e, forse verso la fine del 1908, gli organizzarono un matrimonio combinato. 
Il 1911 fu un anno positivo e promettente: ottenne un incarico che gli permetteva di mantenersi economicamente e di dedicare tutto il tempo che voleva alla matematica. Le serie furono il primo amore di Ramanujan e furono l’argomento del suo primo articolo pubblicato sul Journal. In questo, come in tutta la sua opera, Ramanujan trovò rapporti tra cose che sembravano senza rapporto. Le dimostrazioni che dava erano abbozzate o incomplete, ma con questa pubblicazione cominciò a farsi notare. 
Gli eventi cospirarono per dirgli che sarebbe stato ascoltato con maggiore cognizione di causa dai matematici europei. Scrisse a Baker e a Hobson, ma entrambi gli risposero negativamente. Il 16 gennaio 1913, Ramanujan scrisse a un altro matematico di Cambridge, G. H. Hardy. E Hardy gli prestò ascolto. Fu la stranezza dei teoremi di Ramanujan a colpire Hardy, non la loro genialità. La lettera di risposta di Hardy era prodiga di incoraggiamenti e la carriera di Ramanujan si avviò velocemente, tanto che ricevette una borsa di studio dal Presidency College di Madras che lo rendeva libero di dedicarsi alla matematica: non aveva nient’altro da fare se non presentare un resoconto dei progressi fatti ogni tre mesi.
Con Hardy continuò il contatto epistolare, ma verso la metà di marzo la situazione rasentò la lite vera e propria. E Hardy non rispose per mesi. Nonostante questo, egli fece di tutto per portare Ramanujan in Inghilterra. Ma Ramanujan proveniva da una famiglia indù profondamente ortodossa: recarsi in Europa o in America costituiva una forma di contaminazione. Quando alla fine partì, Ramanujan attribuì la sua decisione all’ispirazione divina.
Appena arrivato in Inghilterra, Ramanujan era produttivo, lavorava sodo, era felice. Come Hardy poté verificare, alcuni suoi risultati erano sbagliati. Alcuni non erano importanti come a Ramanujan piaceva credere. Alcuni erano autonome riscoperte di ciò che i matematici occidentali avevano già scoperto anni prima. Molti, però, forse un terzo, come calcolò Hardy, o forse due terzi, come avrebbero calcolato i matematici più di recente, erano novità da mozzare il fiato.
Era stata una vera fortuna per Ramanujan finire tra le mani di Hardy, che spinse Ramanujan in accelerazione senza mettere la museruola alla sua creatività o spegnere le fiamme del suo entusiasmo. Ramanujan non aveva doveri ufficiali nell’ambito del college. Poteva immergersi nella matematica senza preoccuparsi di esigenze finanziarie, né sue né della sua famiglia. 
Probabilmente dagli inizi del 1916, fu preda di una forte tensione nervosa. Non c’era solo la guerra: c’erano momenti in cui le piccole cose famigliari della vita dell’India meridionale gli mancavano terribilmente e, tra gli inglesi, non poteva non sentirsi un estraneo, perciò si chiuse in se stesso.
Per molti aspetti Hardy era il migliore e più fedele amico che Ramanujan avesse mai avuto. Era premuroso, leale e gentile con lui, ma non erano intimi. Ramanujan viveva i suoi problemi in solitudine e conduceva una vita irregolare, non dormiva e non mangiava, tanto che finì con il minare la sua salute. Sotto la guida di Hardy era andato bene, ma non era felice. Aveva impiegato tutte le sue energie nella matematica. Perciò si spezzò. Tanto che arrivò a tentare il suicidio.
Forse per paura di arrivare tardi, Hardy lavorò per ottenere la sua nomina alla Royal Society e subito dopo ottenne l’elezione al Trinity: i riconoscimenti che gli erano stati accordati avevano risollevato lo spirito di Ramanujan.
Tornò in India nell’aprile del 1919, ma tornava in uno stato di salute alquanto precario e si ritrovò nella fossa dei serpenti della sua famiglia, una bolgia che ribolliva di risentimento. 
Per tutto l’anno trascorso in India, Ramanujan lavorò a nuove scoperte matematiche: le sue capacità intellettive si fecero in proporzione più acute e brillanti. Quattro giorni prima di morire stava ancora scarabocchiando. 
Per quanto riguarda la comunità matematica, Ramanujan continua a vivere: “Scoprì così tanto, eppure lasciò agli altri ancora tanto di più da scoprire del suo giardino” disse Dyson. 
Hardy morì nel 1947. E ancora a distanza di vent’anni, Ramanujan era rimasto parte di lui, un faro splendente, luminoso nella sua memoria. “Un uomo la cui carriera sembra piena di paradossi e contraddizioni, che sfida quasi tutti i canoni secondo i quali siamo abituati a giudicarci l’un l’altro e sul quale tutti probabilmente concorderemmo in un unico giudizio: che fu per certi versi un grandissimo matematico.”
 
COMMENTO:
Un libro interessante. Semplice anche per chi conosce poca matematica, visto che si tratta di una biografia. L’autore è riuscito, attraverso metafore e semplici esempi, a rendere l’idea del peso delle scoperte di Ramanujan. Molto scorrevole.
Mercoledì, 31 Luglio 2013 21:12

L'infinito

TRAMA:
Nella realtà del mondo fisico, nulla parla d’Infinito: lo spazio, il tempo, la massa, il numero delle cariche subnucleari… si tratta di cose immense, di numero elevatissimo, ma non infinito. Eppure l’intelletto umano concepisce l’Infinito e ne subisce il fascino. Il posto d’onore, nell’indagine sull’Infinito spetta a Georg Cantor: “è lui che ha saputo trovare le chiavi di quello che il grande matematico David Hilbert definì il paradiso di Cantor”. 
Quest’avventura intellettuale è raccontata da Zichichi con una favola: in un luogo ed un tempo imprecisati, un Imperatore escogitò un nuovo metodo per rifornire di denaro le sue casse, dichiarando vincitore di un concorso colui che avesse raggiunto il massimo numero di cose in suo possesso. Qualsiasi cosa fosse. Il valore era irrilevante. In questo modo l’Imperatore avrebbe misurato la ricchezza dei suoi sudditi. Alla chiusura del concorso, i contabili dell’Imperatore non riuscirono a stabilire se fossero di più i cubetti d’oro del conte Alberto, le pietre preziose del Marchese Augusto o i numeri del notaio don Luigi. La principessa Cristina risolse il problema confrontando i tre numeri tramite una corrispondenza biunivoca: la conclusione fu che il premio andasse distribuito ex-aequo ai tre. Con loro la Principessa fondò una nuova accademia, il cui principale argomento di discussione era l’Infinito ed il confronto fra i vari livelli di Infinito.
Proseguendo nel ragionamento, i tre giunsero al teorema di Gödel, ovvero alla dimostrazione che non ci può essere certezza… nemmeno in matematica! Si era sempre creduto che un teorema potesse essere o vero o falso: in realtà, ci sono teoremi dei quali non è possibile decidere se siano veri o falsi. 
Il cammino verso l’Infinito viene poi sintetizzato da Zichichi in venti tappe, dalla comparsa dell’uomo sulla terra fino alla scoperta della matematica non cantoriana, da parte di Paul Cohen nel 1963. Il cammino si snoda tra la nascita della logica nel VI secolo a.C., la nascita dei numeri irrazionali e la scoperta delle infinite frazioni di uno da parte di Zenone, fino ad arrivare alla possibilità dell’Infinito Potenziale di Aristotele e all’infinità dei numeri primi da parte di Euclide. Galilei scopre che una parte è equivalente al tutto, nel caso dell’Insieme Infinito dei numeri interi, ma se ne lascia spaventare. È Cantor a scoprire i diversi livelli di Infinito e a proporre l’Ipotesi del Continuo, secondo la quale non esistono livelli intermedi di infinito tra “aleph-zero” e “aleph-uno”. Tale Ipotesi primeggia nell’elenco dei problemi matematici da risolvere proposti da Hilbert nel 1900, ma con la scoperta di Gödel del crollo della certezza, essa sembra non avere soluzione.
 
COMMENTO:
Zichichi non delude… come sempre! La favola ripercorre le varie tappe del cammino umano, che hanno portato a parlare di Infinito in maniera sempre più competente. Il libro è ottimo soprattutto per i ragazzi di quinta superiore, visti i molti riferimenti anche alla filosofia. 
È semplice e simpatico, soprattutto nelle prime due parti. Un po’ più complessa la terza parte.