Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Libri

Libri (175)

Martedì, 11 Agosto 2015 16:26

Un biglietto di sola andata

TRAMA:

Bruno Codenotti ci invita nel mondo della logica e della teoria dei giochi attraverso le vicende di Aldo, esemplare di Homo Rationalis, che “agisce sempre con uno scopo e logicamente e ha la capacità di calcolare tutto ciò che è necessario per raggiungere il proprio scopo”. L’alunno che ogni insegnante di matematica vorrebbe? Forse no, considerati gli sviluppi della vicenda, quando Aldo si finge uno studente di un Liceo Sperimentale.

Il libro di Codenotti nasce dalle conferenze divulgative tenute dall’autore e dal confronto continuo con gli insegnanti e gli alunni incontrati nel suo cammino. Le vicende di Aldo sono ben pensate, con quesiti e problemi ispirati dagli scritti di Raymond Smullyan, Henry Dudeney, George Boolos e Martin Gardner. Il lettore è invitato nel mondo della logica, senza doversi scontrare con il “formalismi che rappresentano un grosso ostacolo alla divulgazione”. Non solo, è l’autore stesso a offrirci una scappatoia nella prefazione: se i problemi che Aldo affronta nel corso della narrazione ci paiono troppo impegnativi, abbiamo la possibilità di leggere immediatamente la sua soluzione oppure di passare oltre, visto che i brani in questione sono scritti con un carattere diverso. Questa scelta non compromette la comprensione degli eventi successivi, ma scegliere di fare un po’ di fatica per affrontarli significa darsi la possibilità di “entrare più in profondità nelle tematiche, a prezzo di un piccolo sforzo.”

Le vicende di Aldo si svolgono in tre luoghi diversi: nel nostro mondo, ovvero nel mondo dell’Homo Sapiens, nel mondo onirico dell’Isola di VeroFalso e nel mondo di Logicolandia. Nella nostra realtà, Aldo incontra soprattutto i giovani, perché, come gli viene ricordato, essi “sono aperti a nuove amicizie e fanno poche domande”. Durante i suoi sogni, Aldo approda all’Isola di VeroFalso dove l’indagine sulla verità gli permette anche di capire meglio se stesso. E nel mondo di Logicolandia, Aldo è nel suo elemento, ma non illudiamoci: un mondo perfettamente razionale non ci regalerebbe delle elezioni perfettamente democratiche, come ci ricorda il paradosso di Condorcet e non ci toglierebbe il cruccio di certe decisioni apparentemente assurde che vengono prese sulla base del paradosso di Braess. Infine, nemmeno la giustizia sarebbe garantita, se dovessimo fare i conti con il dilemma del prigioniero.

 

COMMENTO:

Questo libro è una vera miniera di problemi e paradossi e la sua lettura è consigliata a tutti: a coloro che hanno voglia di misurarsi con alcuni problemi di logica, ma anche a quelli che salteranno a piè pari i problemi più complessi, perché troveranno comunque il modo di rendersi conto della complessità e dei paradossi che albergano nel mondo della logica e con i quali ci scontriamo nella vita di tutti i giorni. Le vignette di Eros Pedrini alleggeriscono la narrazione, che è semplice e alla portata di tutti.

Il libro realizza davvero ciò che il sottotitolo ci ha promesso: si tratta di un “invito alla logica e alla teoria dei giochi” e certi inviti non si possono proprio rifiutare!

TRAMA:

“L’attività di risoluzione di problemi è l’intima natura della matematica stessa”: nel libro di D’Amore troviamo a più riprese questa affermazione, che costituisce uno dei motivi per cui l’autore si è cimentato con questo scritto. E chi meglio di lui avrebbe potuto affrontare questo argomento? D’Amore “rappresenta una delle persone che negli anni ha contribuito maggiormente a far diventare una didattica disciplinare, la didattica della matematica, una vera e propria disciplina”. Addentrandosi in questa ricerca, l’autore si è ritrovato negli ambiti della pedagogia e della psicologia, dove si muove con un certo agio, considerata la laurea in pedagogia conseguita nel 1992. Il libro attuale, curato dalla casa editrice Digital Docet, è una rivisitazione di un testo edito nel 1993 da Franco Angeli, “Problemi, pedagogia e psicologia della matematica nell’attività di problem solving”: modificato e riveduto, con un arricchimento della bibliografia, ne conserva la struttura e le citazioni e affronta il tema della risoluzione dei problemi da più angolazioni. L’obiettivo di D’Amore è “di dare alle stampe un’opera che raccolga studi su questo delicato e interessantissimo problema didattico, ma che non sia solo teorico, bensì una fonte di ricche stimolazioni concrete per l’insegnante di scuola primaria, soprattutto, nella sua azione quotidiana”. In realtà, il testo è utilissimo anche per gli insegnanti della secondaria, visto che alcune delle considerazioni ivi presentate valgono per tutti i livelli scolastici. D’altra parte, con la promulgazione dei nuovi programmi per le scuole nel 1985, la matematica “assume finalmente un ruolo di rilievo non più solo strumentale ma educativo”, visto che “l’educazione matematica contribuisce alla formazione del pensiero nei suoi vari aspetti”. Come sostiene lo stesso Polya, matematico ungherese citato a più riprese nel testo, “risolvere problemi è un’impresa specifica dell’intelligenza e l’intelligenza è il dono specifico del genere umano” ecco perché si può considerare il risolvere problemi come “l’attività più caratteristica del genere umano”.

D’Amore esplora tutti gli ambiti: comincia con la motivazione, un problema psicologico, pedagogico, didattico, ma al tempo stesso affettivo, per incrementare la quale la famiglia ha il compito di apprezzare e sostenere la scuola. L’insegnante può lavorare sull’attivazione di comportamenti positivi, motivando e premiando, sollecitando, rendendo lo studente consapevole dei propri successi. D’altra parte, l’insegnante, soprattutto nella scuola secondaria, ha il difficile compito di “insegnare a pensare”, come ci ricorda Polya. È fondamentale che l’insegnante, non solo quello di matematica, aiuti lo studente nell’acquisizione di una conoscenza “ben strutturata” nelle singole discipline.

Non si può parlare di didattica della matematica senza far riferimento all’intuizione, il “centro nevralgico della risoluzione di un problema”. Non si possono insegnare le intuizioni, ma si può lavorare sulla conoscenza e sulle competenze: risolvere problemi, se fatto in autonomia e con piena consapevolezza, genera ulteriore competenza. Prima dell’intuizione, ogni studente ha bisogno di un tempo di latenza, durante il quale prepara il terreno per l’ispirazione, magari ricordando le proprie esperienze precedenti. In questo caso il ruolo dell’insegnante non è certo quello di intervenire in continuazione sollecitando o suggerendo: l’insegnante di matematica deve dimenticare la propria impazienza, conservando uno stato tranquillo, per “invitare implicitamente a ri-concentrarsi e a tornare al lavoro”.

Che dire poi del legame tra matematica e linguaggio? Viene ribadito a più riprese che l’educazione linguistica, in genere considerata dominio assoluto dell’ora di lettere, appartiene anche alla matematica, come si può capire nel momento in cui si chiede a uno studente di leggere con attenzione un problema o di fornire una motivazione del procedimento eseguito. La difficoltà di un problema, al di là della mancanza di intuizione, può palesarsi fin dall’inizio, con la difficoltà di comprensione del testo, con il blocco nel momento in cui si sta cercando la rappresentazione economicamente più vantaggiosa, per aiutare la propria immaginazione nella soluzione del problema.

Ripetere gli stessi problemi più e più volte ha senso solo nel momento in cui si vogliono dare degli automatismi (in tal caso, però, si fanno ripetere degli esercizi), ma non funziona in questo caso, visto che risolvere problemi significa “prendere decisioni”, valutare quali modelli applicare, scegliere un modello conveniente rispetto ad un altro. Ciò che realmente aiuta è la riflessione al termine dell’attività, per valutare la propria strategia, per acquisire nuove conoscenze, mentre l’insegnante sottolinea l’errore “con una bella dose di stupore, allegria, scherzo”.

 

COMMENTO:

Una lettura consigliatissima agli insegnanti di matematica! Durante la lettura, mi sono sentita guidata dall’autore, che, attraverso numerosi esempi e tantissimi aneddoti, ha stimolato la mia inventiva, facendo nascere in me numerose idee che conto di applicare in classe.

Venerdì, 10 Luglio 2015 21:29

Sette brevi lezioni di fisica

TRAMA:

Sette lezioni “scritte per chi la scienza moderna non la conosce o la conosce poco”: sono l’espansione di una serie di articoli pubblicati per un supplemento del Sole24Ore e offrono una “carrellata su alcuni degli aspetti più rilevanti e affascinanti della grande rivoluzione che è avvenuta nella fisica del XX secolo”.

La protagonista della prima lezione è la relatività generale: per comprenderla è richiesto “un percorso di apprendistato. Ma il premio è la pura bellezza. E non solo: anche l’aprirsi ai nostri occhi di uno sguardo nuovo sul mondo.”
La seconda lezione è dedicata al secondo pilastro della fisica del Novecento: la meccanica quantistica. Rafforzata da grandi successi sperimentali, la meccanica quantistica ha fatto nascere applicazioni che hanno cambiato la nostra quotidianità, ma resta ancora avvolta nel mistero.
La terza lezione è dedicata al cosmo, il cui studio è stato costruito nella seconda metà del XX secolo a partire dalle fondamenta date da Einstein e dalla meccanica quantistica.
Le particelle della quarta lezione sono i componenti di tutto ciò che si muove nello spazio attorno a noi. Il movimento e la natura delle particelle sono descritti dalla meccanica quantistica, come “minuscole ondine che corrono”, spariscono e ricompaiono “secondo le strane regole della meccanica quantistica”.
La quinta lezione è dedicata alla gravità quantistica: partendo dal presupposto che relatività generale e meccanica quantistica non possano essere entrambe giuste, anche se funzionano bene, perché – nella loro forma attuale – si contraddicono l’un l’altra, per dirimere la questione ci si è indirizzati verso la gravità quantistica. L’idea di fondo è semplice, ma il fatto che le sue equazioni non contengano più la variabile “tempo” ci porta ancora più lontani da tutto quello che ci è familiare.
Il tema della sesta lezione è il calore, nella sua relazione con la probabilità, il tempo e i buchi neri. Sappiamo che una sostanza è più calda di un’altra quando i suoi atomi si muovono più veloci e che il calore fluisce dalle cose calde alle cose fredde. Il tempo è legato al calore, perché proprio il fluire dal caldo al freddo può fare la differenza tra presente e passato.

La “fotografia della realtà” che l’autore ha provato a comporre si conclude con gli esseri umani e il loro ruolo in questo “affresco del mondo” offerto dalla fisica contemporanea. Siamo non solo gli autori della fisica, ma ne siamo anche parte integrante: siamo situati all’interno del mondo che la fisica prova a descrivere. Lo studio della fisica non è lontano dalle passioni e dalle emozioni che dominano la nostra vita: “Noi siamo fatti della stessa polvere di stelle di cui sono fatte le cose e sia quando siamo immersi nel dolore sia quando ridiamo e risplende la gioia non facciamo che essere quello che non possiamo che essere: una parte del nostro mondo”.

 

COMMENTO:

Un libro accessibile a tutti, nonostante la complessità degli argomenti trattati. Carlo Rovelli è molto bravo a guidarci in questo percorso e a farci capire in quale direzione si stiano muovendo le attuali ricerche. La fisica è una sfida per la conoscenza e, al tempo stesso, è il nostro modo di rappresentarci la realtà e di rispondere alle domande che costellano la nostra esistenza.

“Qui, sul bordo di quello che sappiamo, a contatto con l’oceano di quanto non sappiamo, brillano il mistero del mondo, la bellezza del mondo, e ci lasciano senza fiato.”

Venerdì, 10 Luglio 2015 13:46

Enigma

TRAMA:

Il fumetto tratta della vita di Turing a partire dalla sua infanzia, con le sue esperienze scolastiche, deludenti per quanto riguarda i rapporti con i compagni fino a quando non incontra Christopher Morcom, interessato quanto lui alla matematica e alle scienze e purtroppo mancato prematuramente per la tubercolosi. Nel 1931, Turing approda al King’s College. È un ottimo maratoneta e correndo si perde nei suoi pensieri astratti. Dopo aver delineato l’evoluzione della logica e dei fondamenti della matematica, dal programma di Hilbert alla formula di Gödel che affermava la propria indimostrabilità, la presentazione della vita di Turing procede con la macchina di Turing, ideata per l’articolo del 1936 “On computable numbers”, nel quale Turing prova l’insolubilità del problema di decisione con un approccio innovativo e introducendo il concetto di macchina automatica applicata al calcolo.

Dopo un breve viaggio in America durante il quale incontra von Neumann che gli offre un posto di assistente, al ritorno in Inghilterra, Turing viene reclutato dall’intelligence inglese per la decrittazione. I successi navali dei nazisti dipendono da Enigma, una macchina cifrante che serviva a comunicare ai sommergibili U-Boat gli obiettivi militari da colpire: il sistema garantiva la massima sicurezza e a Bletchley Park si lavorò proprio per decrittare i messaggi inviati con Enigma. Tra le intuizioni logiche di Turing e della sua squadra e le informazioni ottenute con lo spionaggio, si arriva alla decrittazione dei messaggi e alla sconfitta del nazismo.

Nel 1950, l’Inghilterra continua a essere moralista e conservatrice. Nel 1952 Turing conosce il diciannovenne Arnold Murray all’uscita di un cinema e questi si rende complice di un furto in casa dello scienziato. Per denunciare il furto, Turing parla anche della propria omosessualità e, condannato, non gli resta che sottoporsi per un anno alla castrazione chimica, che lo rende impotente e gli fa crescere il seno. Devastato fisicamente e psicologicamente, Turing muore l’8 giugno del 1954. Apparentemente si tratta di un suicidio, eseguito mangiando una mela avvelenata, ma viene avanzata anche l’ipotesi dell’omicidio da parte dell’intelligence inglese, per preservare i segreti di guerra, considerato che Turing, con la sua omosessualità, era un individuo facilmente ricattabile.

 

COMMENTO:

Con il semplice linguaggio dei fumetti, non viene solo presentata la vicenda – umana e scientifica – di Alan Turing, ma anche il suo contributo dato allo sviluppo della matematica, la sua macchina immaginaria e il livello a cui era giunto lo studio dei fondamenti della matematica in quegli anni. Non manca nulla: la storia è completa e analizza tutti gli aspetti della vita del grande scienziato. Certo, non è che un modo per avvicinarsi alla sua vicenda in modo semplice: può essere un’occasione per cogliere l’importanza del suo ruolo nello sviluppo del pensiero moderno e un ottimo trampolino di lancio per dedicarsi poi a successivi approfondimenti.