Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Libri

Libri (175)

Giovedì, 09 Luglio 2015 07:57

È matematico!

TRAMA:

Questa quadrilogia è dedicata ai bambini più piccoli, un’introduzione alla matematica nel momento in cui fanno il loro ingresso nella scuola primaria: “Le avventure del signor 1”, “La grande invenzione di Bubal”, “La geometria del faraone” e “10+ Il genio sei tu!” sono i quattro titoli, pubblicati in precedenza separatamente sempre per la Emme Edizioni.

“Le avventure del signor 1”: Alla scoperta della matematica attorno a noi, con il numero 1 che, stanco di starsene spiaccicato sul calendario, il primo giorno di primavera decide di andarsene a spasso per la città, e si ritrova inseguito da un fruttivendolo che l’ha scambiato per un insetto. Il libro si conclude con alcuni piccoli esercizi / giochi per il “provaci tu!”.

“La grande invenzione di Bubal” e “La geometria del faraone” sono più simili tra loro: in entrambi i casi, viene raccontata una storia e, alla fine, si scopre che è in realtà una maestra ad averla raccontata ai propri alunni, una storia dentro la storia. Nel primo caso, la protagonista è la piccola Bubal, ragazzina preistorica, alla quale il papà ha affidato il gregge prima di andare a caccia e il difficile compito richiede la capacità di contare, che la piccola si inventa. Nel secondo caso, il protagonista è Ames, figlio di un tenditore di corde, che ha ricevuto dal faraone il premio dello scarabeo d’oro per essere riuscito a disegnare un quadrato.

“10+ Il genio sei tu!”: Ha per protagonisti tre asini, Bello, Bullo e Snello che con le mogli Stella, Lalla e Nella trovano una fattoria con quattro anziani che li accolgono. Per mandare avanti la fattoria è necessario conoscere un po’ di aritmetica e così mandano a scuola la più intelligente tra loro, Nella. Piccoli problemi di aritmetica accompagnano gli asini nel loro percorso, mentre Snello ci offre piccole perle di filosofia. Un’ottima introduzione alle quattro operazioni, che non sono così terribili come vogliono farci credere.

 

COMMENTO:

La Emme Edizioni propone questa edizione con i quattro libri, già usciti separatamente, riuniti in un unico volume, colorato e accattivante. La quadrilogia, dedicata ai più piccoli, può essere letta dai genitori a partire dalla scuola dell’infanzia, un modo originale e divertente per accompagnare i propri figli alla scoperta della matematica, attraverso storie simpatiche e colorate con bellissime illustrazioni.

La Cerasoli è una garanzia in fatto di divulgazione matematica: ha la capacità di presentare concetti complicati come se fossero semplicissimi, in modo da renderli comprensibili per tutti.

Domenica, 21 Giugno 2015 12:14

Il caso Eduard Einstein

TRAMA:

Nel 1930, il secondogenito di Albert Einstein e Mileva Marić, Eduard, fa il suo ingresso al Burghölzli, la clinica psichiatrica dell’Università di Zurigo. Nato il 28 luglio del 1910, Eduard aveva un’intelligenza geniale, ma anche molti comportamenti strani, fin dalla più tenera età, comportamenti che sfociano nel ricovero del 1930, dopo un episodio di violenza contro la madre: “Ci sono anche quelle voci che mi sussurrano all’orecchio parole che mamma non sente.” Eduard è schizofrenico e numerose sono le cure che vengono tentate per migliorarne le condizioni. Quando riceve la notizia del ricovero, Albert Einstein sta vivendo le persecuzioni naziste, tanto che nel maggio del 1933 decide di lasciare Berlino per fuggire in America. Prima di lasciare l’Europa, si ferma a Zurigo per vedere il figlio, che nel corso degli ultimi tre anni ha subito un ricovero dietro l’altro. Durante la breve visita, Albert e Eduard suonano insieme, ma l’incontro è comunque difficile: Albert chiede al figlio di seguirlo in America, ma il figlio mostra solo rabbia nei suoi confronti.

Nel 1935, Mileva tenta la cura dell’insulina del dottor Sakel e per un mese Eduard viene tenuto in coma, ma non ci sono grandi miglioramenti. Besso, il miglior amico di Einstein, è rimasto a Berna e tiene informato il padre dell’evoluzione della malattia. Vorrebbe che lo scienziato prendesse con sé il figlio e Albert prova a parlarne con i funzionari dell’immigrazione, ma non è possibile: solo ad Hans Albert è concesso di raggiungerlo.

Nel 1948, dopo un breve ricovero al Burghölzli a causa di un’ischemia, Mileva muore. Per Einstein è un momento di grande tristezza, mentre Eduard fatica a cogliere il senso di una simile notizia, ma anche se non ne è consapevole, ha perso i suoi punti di riferimento. Gli assegnano quindi una famiglia adottiva, sulle colline di Zurigo. Quando Carl Seelig, un giornalista, contatta Albert per diventarne il biografo ufficiale, gli chiede anche di incontrare Eduard e di poterne diventare il tutore. Lo incontrerà più volte e a lui Albert confiderà tutta la sua tristezza e la sua impotenza: “Si stupirà per il fatto che non intrattengo rapporti epistolari con Teddy. Dietro a questo, c’è qualcosa che non riesco ad analizzare del tutto. Bisogna però anche dire che temo di destare in lui sentimenti dolorosi, di diversa natura, per il solo fatto di farmi vivo con lui.” Per Einstein, Eduard resta un “problema senza soluzione”.

Albert muore a Princeton nel 1955, mentre Eduard conclude la sua esistenza al Burghölzli nel 1965.

 

COMMENTO:

Un romanzo corale, nel quale si alternano le voci di Albert Einstein, della prima moglie Mileva e del loro secondogenito, Eduard. Un romanzo intenso, come intensa è stata la vita di Eduard, con la malattia che ha compromesso la sua genialità.

Il ritratto di Einstein, con le sue luci e le sue ombre, che emerge da questo romanzo è un ritratto che non dimentica nulla: Einstein ha avuto il coraggio di combattere le ingiustizie del mondo, dal nazismo alla segregazione razziale contro i neri in America, facendosi persino accusare di comunismo dai media americani, ma non è mai stato in grado di andare a trovare il figlio, dopo averlo salutato nel 1933, al momento della sua partenza per l’America. Seksik, per certi aspetti, giustifica l’atteggiamento di Einstein, lo descrive come un padre che non ha saputo confrontarsi con la sofferenza di un figlio imperfetto, che lui stesso ha contribuito a mettere al mondo. È forse questa intensità ciò che colpisce di più nel romanzo: Einstein, ritratto in genere come l’uomo geniale, il grande scienziato che ha cambiato la nostra storia, è in questo libro soprattutto un padre, con la sua sofferenza e la sua umanità.

Giovedì, 16 Ottobre 2014 14:15

L'assassinio di Pitagora

TRAMA:

La vicenda ha inizio il 25 marzo del 510 a.C. e si conclude, quasi cinque mesi dopo, il 12 agosto. La scena iniziale vede Pitagora, l’uomo più influente del periodo, davanti ai sei uomini più importanti della sua scuola, i Grandi Maestri tra i quali vuole trovare un successore: “solo colui che fosse stato nominato suo successore avrebbe ricevuto gli ultimi insegnamenti, salendo così un altro gradino sulla scala tra l’uomo e la divinità”. All’improvviso, Cleomenide, uno dei Maestri, muore avvelenato dalla mandragola contenuta nel vino che sta bevendo.

Qualche giorno dopo, Akenon, egizio noto per la sua abilità a investigare, si trova a Sibari, presso Glauco, un aristocratico che vuole verificare un tradimento. Akenon ristabilisce la verità, ma solo l’intervento di Arianna, la figlia di Pitagora, lo salva dalle conseguenze. Pitagora vuole coinvolgerlo nelle indagini, ma inizialmente Akenon non ha intenzione di prendervi parte: solo la seconda morte lo convincerà a fermarsi a Crotone per risolvere il mistero. Arianna lo aiuta nelle indagini, mentre Cilone, membro del Consiglio dei Mille, trama contro i pitagorici e tenta di eliminare Akenon, guardato con ostilità perché straniero e perché cerca di risolvere il caso.

 

COMMENTO:

Il libro è fedele agli episodi storici del VI sec. a.C., periodo nel quale Pitagora è stato uno degli uomini più influenti. I personaggi principali come Milone, il genero di Pitagora, Cilone, vendicativo e meschino, e Telis, il capopopolo sibarita, sono realmente esistiti e reale è la vicenda che li vede coinvolti, almeno nella sua parte principale, se escludiamo la finzione letteraria del giallo.

Nonostante le sue 700 pagine, la vicenda scorre velocemente, mentre si viene catturati dal mistero e dalla storia di Akenon e Arianna, sia per il loro passato che per quanto si trovano a condividere.

Geniale la trovata dell’autore che presenta alcune pagine di un’inesistente Enciclopedia matematica, scritta da Socram Ofisis nel 1926 (Socram è Marcos al contrario): si comincia con la storia di Pitagora e si continua con la presentazione dei contenuti matematici, ovvero il pentacolo, il pi greco, la sezione aurea, il teorema di Pitagora e i numeri irrazionali.

Il libro è consigliato a tutti coloro che amano la lettura, perché è un modo diverso dal solito per imparare qualcosa della matematica e della filosofia del mondo pitagorico e della storia della fine del VI secolo a.C.

Per chi volesse avere ulteriori informazioni, può visitare il sito dell’autore http://www.marcoschicot.com, nel quale viene raccontata la genesi del libro, della quale è responsabile Lucia, la primogenita di Chicot.

Sabato, 23 Agosto 2014 17:06

La sezione aurea

TRAMA:

L’antica Grecia è a ragione considerata la culla della nostra cultura: scienze, filosofia, arte, letteratura, ma soprattutto matematica, hanno trovato qui i propri natali. Platone ebbe il merito di scoprire i poliedri regolari, detti appunto platonici, e di costruire la realtà su di essi: questi sono legati indissolubilmente alla sezione aurea e, con ogni probabilità, l’interesse per il rapporto aureo è scaturito proprio dai tentativi di costruirli, anche se i primi a parlare di numeri irrazionali pare siano stati i pitagorici, nel VI sec. a.C.

Con la pubblicazione, nel 300 a.C., degli Elementi di Euclide, l’opera matematica più grandiosa e influente che sia mai stata scritta, il rapporto aureo comincia a diffondersi. Scavalcando gli arabi, che si occuparono principalmente di algebra, si arriva a Leonardo Fibonacci, che ha avuto il merito di diffondere in Europa le cifre indo-arabiche. Fibonacci usò consciamente il rapporto aureo nella soluzione di alcuni problemi e, formulando il quesito dei conigli, ne ha ampliato in modo decisivo la portata e le applicazioni, grazie al legame trovato successivamente da Keplero.

Nel Rinascimento, alcuni pittori hanno fornito contributi matematici di un certo rilievo: il più prolifico fu Piero della Francesca, con tre opere matematiche, con le quali dimostra che la prospettiva è fondata solidamente su basi scientifiche. Alcune delle questioni algebriche che affrontò furono riprese dal matematico Luca Pacioli, che, con il suo Compendio de divina proportione, presenta un riassunto dettagliato delle proprietà del rapporto aureo, portando a un rinnovato e diffuso interesse per la sezione aurea.

Il rapporto aureo divenne fondamentale anche per il funzionamento dell’universo, grazie al contributo di Keplero, che – trovato convincente il sistema copernicano – scelse di separare le orbite dei pianeti con i solidi platonici. Il modello era sbagliato, ma era sicuramente innovativo.

Nel mondo dell’arte, Paul Sérusier fece uso del rapporto aureo in alcune opere, soprattutto per “controllare, e in qualche caso disciplinare” le sue invenzioni, mentre Le Corbusier, che all’inizio aveva idee negative al riguardo, fece culminare la sua ricerca nel “Modulor”, che era in grado di conferire dimensioni armoniose a tutto, dalle maniglie delle porte agli spazi urbani. Numerosi autori hanno sostenuto che il rettangolo aureo sarebbe esteticamente più soddisfacente di tutti gli altri rettangoli, tanto che uno dei fondatori della moderna psicologia, Gustav Theodor Fechner decise di effettuare degli esperimenti, negli anni Sessanta dell’Ottocento, per verificarlo. Nel secolo scorso, ne sono stati sottolineati l’ingenuità e i difetti metodologici, visto che “non sembra esserci alcuna base razionale della teoria estetica che considera la sezione aurea un ingrediente decisivo della bellezza delle forme visive”. Anche in ambito musicale, le speculazioni riguardanti il rapporto aureo sono numerose: accanto a usi incontestabili del rapporto aureo, ve ne sono altri dovuti all’immaginazione dei loro scopritori. Tutti i tentativi di svelare la presenza di fin varie creazioni artistiche, dalla pittura alla musica alla poesia, si basano sul presupposto che esista un canone di bellezza ideale, ma la storia ci dice che non sempre alla base della bellezza c’è la sezione aurea.

Per realizzare le tassellature del piano, si è sempre saputo che il pentagono – il poligono più legato al rapporto aureo – non è adatto a ricoprire una superficie in modo completo e regolare. Nel 1974, Roger Penrose, fisico di Oxford, ha scoperto due schemi fondamentali di intarsio per coprire una superficie, sfruttando una simmetria quintupla, ovvero basandosi sul rapporto aureo. Apparentemente questi suoi studi dovevano restare confinati nell’ambito della matematica ricreativa, ma nel 1984 l’ingegnere israeliano Dany Schectman ha trovato una lega di alluminio con simmetria quintupla.

Nell’ultimo capitolo, l’autore si concentra sulle diverse interpretazioni della matematica: tra la visione della matematica come dotata di un’esistenza indipendente dal pensiero umano e quella di una matematica inesistente al di fuori del pensiero, l’autore sostiene che solo gli assiomi sono frutto di una scelta umana, ma dopo di essi la matematica gode in un’esistenza autonoma. “Il rapporto aureo è un prodotto della geometria, un’invenzione umana. Ma gli uomini non immaginavano in quale magico regno di fate ed elfi quel prodotto li avrebbe portati.”

 

COMMENTO:

Storia della matematica, arte, musica, poesia sono gli ingredienti di questo prezioso libro, nel quale la sezione aurea non viene solo definita, ma ne viene indagata la presenza nelle opere d’arte più famose e nei posti meno comuni, come i quasi-cristalli. Proprio il carattere eclettico del libro permette di incontrare i gusti di tutti i lettori, non solo degli appassionati di matematica ed è in particolare consigliato a tutti coloro che si interessano di arte. Il lettore viene guidato partendo dai contenuti più semplici, come il significato dei numeri per i pitagorici, fino ad arrivare ai frattali, con la loro bellezza e complessità. Peccato manchino le immagini a colori, almeno nell’edizione della Rizzoli.