Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Libri

Libri (200)

Martedì, 27 Dicembre 2016 16:30

L'uomo che credeva di essere Riemann

Il 7 aprile del 1997, Ernest Love – nome fittizio per un matematico di rilievo nel campo accademico mondiale – riceve una mail da Eugenio Donecan, un altro matematico, che dichiara di aver dimostrato l’ipotesi di Riemann. Ernest scoppia a ridere e poi comincia a dire frasi senza senso. Viene chiamato il dottor Benedetti, illustre psichiatra, per risolvere quello che sembrerebbe uno sdoppiamento di personalità: Love, infatti, si crede Riemann, pur ricordando ancora molto bene il proprio passato di matematico del XXI secolo. Attorno a lui, alcune persone sembrano avere a cuore la sua reputazione e chiedono al dottor Benedetti di seguire il nuovo paziente con grande riservatezza. Dietro l’ipotesi di Riemann, emergono interessi economici non indifferenti, perché sulla sua mancata soluzione si basano tutti i sistemi crittografici attualmente in uso.
“Tutti gli zeri non banali della funzione zeta hanno parte reale 1/2”, recita l’ipotesi. Per il dottor Benedetti è difficile capirne il senso e l’autrice trova il modo di spiegarci, con una storiella, l’enunciato. Nel tentativo di smuovere il suo paziente, Benedetti decide di accompagnarlo nella villa di alcuni amici, dove accade un imprevisto: incontrano Filippo, il nipote del custode, un vero appassionato di matematica. Tra Love e Filippo c’è una grande sintonia e cominciano a parlare di matematica: Godfrey Hardy, Ramanujan, André Weil, Persi Diaconis sono l’oggetto dei loro discorsi. Love si spinge anche oltre: nella sua immedesimazione in Riemann, racconta a Benedetti della sua amicizia con Dirichlet ed è davvero bello il racconto dell’attimo in cui, durante una festa, Riemann ha avuto l’ispirazione e ha scoperto l’enunciato che porta il suo nome. 
In cerca di ispirazione, Benedetti legge un libro di logica nel corso della notte e capisce che l’ipotesi di Riemann può essere la chiave che aprirà la porta della libertà per Ernest…
 
Ottima la competenza con cui l’autrice affronta un tema così difficile come l’ipotesi di Riemann, rendendocela comprensibile con metafore e storielle. Inoltre, è interessante l’incipit: la mail di Eugenio Donecan è stata scritta realmente, ma da Enrico Bombieri, proprio nel 1997 in occasione di un pesce d’aprile. L’inizio è quindi reale, mentre la vicenda dello sdoppiamento di personalità di Love è l’occasione per ripercorrere i momenti salienti della vita di Bernhard Riemann. Nel libro trovano posto anche alcuni aspetti della vita personale dell’autrice: il giovane Filippo rappresenta il piccolo Filippo nominato nella dedica, un ragazzo per il quale il Signore ha deciso che sarebbe stato un ragazzo autistico e non un matematico. Anche i luoghi sono quelli della vita dell’autrice: villa Necchi Campiglio esiste realmente a Milano, una dimora storica dall’importante architettura.
Un romanzo che è un piccolo gioiello: interessante, alla portata di tutti e coinvolgente. 
Giovedì, 01 Dicembre 2016 14:40

Galileo Galilei esploratore del cielo

Tra le collane di EL, casa editrice specializzata in libri per ragazzi, spicca la collana “Grandissimi”, cui appartiene questo libretto. Sul sito della Casa Editrice questa è la descrizione della collana: “I grandi della Storia a portata di bambino. Storie di uomini e donne che hanno cambiato il mondo, ciascuno a modo proprio, con le proprie parole, le proprie invenzioni, le proprie scelte.” Da Giulio Cesare a Francesco d’Assisi, da Anne Frank fino a Einstein, non abbiamo che l’imbarazzo della scelta. La collana ha come età minima di lettura i sette anni.

 

Il libretto in questione è dedicato a Galileo Galilei, ma non è certo la tipica biografia: troviamo un Galileo ormai anziano, isolato e solitario dopo il processo dell’Inquisizione, amareggiato e triste. Baldo è un bambino come tanti e, inizialmente intimorito da Galilei, una volta che ha preso confidenza mostra tutta la propria curiosità e non ha paura di porre domande scomode al grande scienziato. Tutto comincia quando Baldo, inciampando in un tappeto, fa cadere a terra una mela e una fetta di pane. “Che cosa ha toccato terra per primo? Il pane o la mela?”. È l’inizio di un’amicizia particolare, con Galilei che guadagna un po’ di allegria grazie a Baldo e Baldo che può imparare cose nuove, conoscere attrezzi misteriosi come il cannocchiale e altre nuove “diavolerie” inventate da Galileo stesso. “Il mondo è come un libro aperto sotto i nostri occhi” dice Galilei a Baldo, mentre gli racconta i propri percorsi, le proprie difficoltà: “provare e riprovare, fino a che non si è ottenuto il meglio e non si è arrivati al fondo di ciò che si sta facendo”. A Baldo, Galilei racconta anche la propria vicenda con l’Inquisizione dopo la domanda innocente del bambino: “Perché, signore, voi siete tanto pericoloso?”.

Le illustrazioni e il linguaggio semplice sono il punto di forza di questo piccolo gioiello: non si è mai troppo giovani per conoscere Galileo Galilei e la “pericolosità” della scienza.

 

“Non bisogna avere paura di vedere le cose come sono.”

Giovedì, 01 Dicembre 2016 14:22

Storia di pi greco

“C’è un numero che da anni mi perseguita. È una persecuzione dolce, che mi rende complice felice più che vittima indifesa, eppure quella presenza è continua, incombente, assillante.” Così esordisce Pietro Greco, che da quando aveva sei anni ha deciso di “seguire le vicende di questo numero fondamentale”. E quanto sia fondamentale, per la matematica ma non solo per lei, lo scopriamo, pagina dopo pagina, in questa breve storia della matematica, che comincia con i Babilonesi e si conclude con il pi-day, in un crescendo di sorprese e curiosità, visto che psembra essere davvero ovunque!

Archimede è il protagonista della prima metà del percorso, considerato che il primo capitolo si intitola “Prima di Archimede” e il quinto “Dopo Archimede”. Non potrebbe che essere così: Archimede, con il suo metodo di esaustione, ha anticipato il concetto di limite, proponendo quello che l’autore chiama un “metodo scientifico” per calcolare pe, senza altro strumento se non la sua mente, ha trovato un valore di questa costante estremamente preciso. Nella Grecia Antica tanti altri hanno legato il proprio nome a questa costante: basti considerare, per avere un’idea della sua importanza, i tre problemi dell’antichità, fra cui figura, appunto, la quadratura del cerchio oppure, citando i sempiterni “Elementi” di Euclide, il terzo postulato “dato un punto e un segmento è sempre possibile ottenere un cerchio”.

Con il sesto capitolo si torna in Europa, dopo la povera parentesi Romana e il lavoro intenso degli Indiani e degli Arabi, con Fibonacci e il suo “Practica geometriae”, pubblicato nel 1220. Nel XVI secolo, i tempi sono ormai maturi per ideare nuovi percorsi ed è il turno di Viète, con un metodo alternativo a quello di Archimede e, soprattutto, l’utilizzo di un’espressione analitica dove “vi fa capolino un assaggio di calcolo infinitesimale”. A questo punto, “la partita di caccia dei digit hunters è iniziata” e arriveremo alle 808 cifre decimali del 1948, senza l’utilizzo di alcuno strumento elettronico. Il calcolo infinitesimale di Newton e Leibnitz apre nuove porte anche a pe finalmente, nel 1706, i tempi sono maturi per dare un nome a questa costante: il nome viene proposto da William Jones, ma è la fama di Eulero che renderà universale la notazione tutt’ora in uso.

Pietro Greco ha setacciato tutta la storia della matematica, lo dimostrano le numerose citazioni di Kline e Boyer, alla ricerca del pi greco e questo dimostra come lo studio di p sia stato una presenza costante nel percorso di ogni matematico. La storia è rapida, Greco non ci risparmia i particolari, ma al tempo stesso il ritmo è incalzante. Il libro è semplice e alla portata di tutti, ma la leggerezza del testo non ci induca a considerarlo banale: la semplicità del percorso è una ricchezza ulteriore e un invito a ulteriori approfondimenti. 

Mercoledì, 23 Novembre 2016 08:29

Dio e l'ipercubo

Nel leggere il libro di Malaspina mi è sembrato di fare una treccia: matematica, teologia e vicende personali dell’autore si cedevano il passo a vicenda, riconducendo al tempo stesso l’una all’altra. Da un lato le nozioni della matematica moderna, con la loro complessità e il loro rigore, dall’altro le più misteriose verità di fede, al centro le vicende personali che probabilmente sono state la causa di questo percorso. Esattamente come gli artisti ci illustrano le vicende della vita di Cristo con i loro dipinti, Malaspina usa la bellezza e il linguaggio simbolico della matematica per condurci ad una Verità più grande.

L’Incarnazione del primo capitolo, che non a caso è ambientato a Nazareth, è indagata tramite la teoria degli insiemi infiniti di Cantor: l’uomo è l’insieme di cardinalità finita che, per quanto spirituale, non potrà mai diventare un insieme di cardinalità infinita e quindi raggiungere Dio. Tramite l’Incarnazione, l’infinito si è abbassato fino al finito, rendendo possibile un avvicinamento. Il Regno di Dio del secondo capitolo ha inizio a Elea, con il tentativo di Achille di raggiungere la tartaruga: così come un intervallo di lunghezza finita si può dilatare fino a diventare una retta, così la Pasqua diventa il faro che illumina la storia dell’umanità. Ecco quindi che gli spazi metrici, con la loro complessità, diventano oggetti semplici che ci guidano alla scoperta del Regno. Il terzo capitolo è dedicato all’amore di Dio e, partendo da Calcutta e con l’uso della topologia, l’autore ci guida alla scoperta della terza virtù teologale, dopo che fede e speranza sono state le protagoniste dei capitoli precedenti.

Oggetti matematici, racconti evangelici e digressioni personali sono i tre ingredienti che rendono unico questo libretto: il percorso non è banale e forse non è alla portata di tutti, ma il titolo stesso stimola la nostra curiosità e invoglia a scoprire qualcosa di più. Dell’ipercubo si parla nel primo capitolo e credo che questo possa essere l’occasione per spiegare meglio, a un potenziale lettore, in cosa consista questo libretto: esattamente come è impossibile immaginare la quarta dimensione, per quanto matematicamente non sia difficile maneggiarla, è impossibile per l’uomo avere un’immagine del mistero divino. Ecco, quindi, che i quattro Vangeli, con il proprio punto di vista diverso e complementare, diventano un modo per avvicinarci al mistero, esattamente come l’ipercubo, che non può essere immaginato, è presentato nel proprio sviluppo tridimensionale con otto cubi.

L’autore non ha l’obiettivo di confutare la tesi degli atei e nemmeno vuole dimostrare l’esistenza di Dio: Malaspina usa le sue due passioni per guidarci in questo percorso ricordandoci che “Il mestiere del matematico consiste soprattutto nel trovare legami tra oggetti apparentemente lontani e modellizzare in qualche modo la realtà che osserva”.