Teoria dei Giochi – compito 2: Bimatrici

Esercizio 1:

Nella seguente bimatrice, dopo aver identificato il massimo tra i minimi di riga e il minimo tra i massimi di colonna, individua l'equilibrio di NASH motivando la tua scelta:

AB	I	II	III
I	10	4	10
II	0	2	14
III	9	6	8
IV	12	5	3

Esercizio 2:

In un'operazione militare vi sono due parti contrapposte, interessate a conquistare due roccaforti. La prima parte ha una dotazione di quattro compagnie di soldati e la seconda una dotazione di tre compagnie. Ogni comandante deve decidere quante, delle sue compagnie, deve inviare in ciascuna delle due roccaforti.

La vincita è così determinata: chi invia più compagnie in una certa posizione la vince e cattura le compagnie avversarie che erano state inviate in quella posizione. Ottiene dunque un'unità di utilità per la roccaforte e tante unità di utilità quante sono le compagnie inviatevi dall'altro. L'altro perde esattamente la stessa utilità complessiva. Si tratta evidentemente di un gioco a somma zero fra due persone. Il problema è impostato nella seguente tabella:

		Strategia di K				
		3, 0	2, 1	1, 2	0, 3	
Strategia di B	4, 0					
	3, 1					
	2, 2					
	1, 3					
	0, 4					

Completa la matrice dei pagamenti Cerca i punti di max-min e di min-max