

Istituto Omnicomprensivo "Decio Celeri"

Scuola dell'infanzia – Scuola Primaria – Scuola Secondaria di I grado
Liceo Artistico – Classico – Scientifico – Scienze Applicate – Sportivo
Via Nazario Sauro, 2 – 24065 Lovere (BG) – Tel. 035 983177 – C.F. 81004920161 – Cod.Mecc. BGIS00100R
www.liceoceleri.edu.it e-mail: bgis00100r@istruzione.it posta certificata:bgis00100r@pec.istruzione.it

\sim 1	VCCE	41	Λ	LICEO	CCIEN	ITICI	2
	ASSE	4′`	A	ヒルトロ	SCIET	4 I IFI	LU

19 dicembre 2024

Formule goniometriche

«O studianti, studiate le matematiche, e non edificate sanza fondamenti.» (Leonardo da Vinci)

120 minuti – 100% – Matematica

COGNOME ______NOME _____

Calcola il valore delle seguenti espressioni:

(scegline 4 e fai una crocetta sul numero corrispondente alla tua scelta)

1.
$$\cos 55^{\circ} \cos 35^{\circ} - \sin 55^{\circ} \sin 35^{\circ}$$
 ______/5

2.
$$\cos\left(\alpha - \frac{2}{3}\pi\right) + \frac{1}{2}\sin\alpha + \cos\left(\alpha - \frac{7}{6}\pi\right) - \sin\left(\alpha - \frac{\pi}{6}\right)$$
 ______/5

3.
$$\tan \frac{\alpha}{2} \left[\cos 2\pi + \sin \left(\frac{\pi}{2} + \alpha \right) \right] + \frac{\sin 2\alpha}{\cos(\pi + \alpha)}$$
 _____/5

4.
$$\sin^2 \frac{\alpha}{2} - \frac{1}{2} - \cos(\pi + \alpha) - \sin^2(-\alpha) + \sin^2(\pi - \alpha)$$
 _____/5

5.
$$(1 - \cos \alpha)^2 + (1 - \cos \alpha)(1 + \cos \alpha) - 4\sin^2 \frac{\alpha}{2} + \sin(-\alpha) - \sin(\pi - \alpha)$$
 _____/5

6.
$$2(1-\sin\alpha)^2 - 4\sin(\pi+\alpha) + 2\cos 2\alpha + (1-\cos\alpha)(1+\cos\alpha) - 4\cos^2\alpha$$
 ______/5

Verifica le seguenti identità, nelle quali si suppongono verificate le condizioni di esistenza:

(scegline 3 e fai una crocetta sul numero corrispondente alla tua scelta)

7.
$$\frac{1 + \cos 2\alpha + \cos \alpha}{\sin \alpha + \sin 2\alpha} = \cot \alpha$$
 _____/7

8.
$$\cos 2\alpha = 2\cos\left(\frac{\pi}{4} + \alpha\right)\cos\left(\frac{\pi}{4} - \alpha\right)$$
 _____/7

9.
$$\frac{\cos 2\alpha}{1 - \tan^2 \alpha} = \cos^2 \alpha$$
 ______/7

10.
$$\frac{\cos^2\frac{\alpha}{2} + 3\tan\frac{\alpha}{2} - \frac{\cos\alpha}{1 + \cos\alpha}}{\csc\alpha + \cos\alpha\cot\alpha + 6} = \frac{1}{2}\tan\frac{\alpha}{2}$$
 ——/7

Scegli 5 e fai una crocetta sul numero corrispondente alla tua scelta

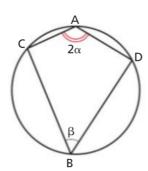
11. Determina il valore dei parametri a e b affinché sia verificata la seguente identità:

_____/8

$$\frac{\cos \alpha - \sin \alpha + 1}{1 + \cos \alpha} = a \tan \frac{\alpha}{2} + b$$

12. Considera la funzione $f(x) = \frac{1+a\cos x}{\sin x - b\cos x - 3}$ con $a, b \in \mathbb{R}$. Determina per quali valori di $a \in b$ la funzione interseca l'asse y in $\left(0; -\frac{1}{3}\right)$ e ha uno zero in π .

____/ 8


13. Trova il periodo della funzione $f(x) = \sin \frac{2}{3}x + \sin \frac{1}{4}x$.

____/8

- 14. Verifica che in ogni triangolo rettangolo, indicando con α , β e γ gli angoli interni, valgono le seguenti uguaglianze: _____/ 8 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 \qquad \qquad \sin 8\alpha + \sin 8\beta + \sin 8\gamma = 0$
- 15. Verifica che, per il quadrilatero riportato sotto, risulta:

/ 8

$$\left(-\tan\beta + \frac{\tan\alpha}{\tan\alpha - \tan\frac{\pi}{4}}\right) \cdot \frac{\sin\beta}{1 - \cos^2\alpha} = \frac{2}{1 + \tan\alpha}$$

16. Considera la funzione $y = 2\cos^2 x + 2\sin x \cos x$.

____/8

- A. Trasformala in modo da ottenere una funzione lineare in seno e coseno.
- B. Determina il periodo.
- C. Disegna il grafico.
- 17. Data l'iperbole di equazione $3x^2 y^2 = -2$, determina l'ampiezza dell'angolo acuto formato dai suoi asintoti.

1	2	3	4	5	6	7	8	9	10
x = 0	(0; 14)	[14; 23)	[23; 32)	[32; 45)	[45; 50)	[50; 59)	[59; 68)	[68; 81)	x = 81