Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Giovedì, 01 Agosto 2013 07:59

I problemi del millennio

Vota questo articolo
(0 Voti)
TRAMA:
Il 24 maggio 2000, durante un Convegno a Parigi, il Clay Mathematics Institute annuncia la messa in palio di sette premi da un milione di dollari, per la soluzione di altrettanti problemi di matematica rimasti irrisolti e giudicati da una commissione internazionale di matematici i sette più difficili e importanti fra quelli ancora da sciogliere. “I problemi del Millennio potrebbero non dare l’idea di dove sia diretta la matematica, ma ci offrono un’eccellente istantanea che mostra dove si trovino, oggi, le sue frontiere”.
L’IPOTESI DI RIEMANN – Essa costituisce l’ultimo problema rimasto irrisolto della lista di Hilbert del 1900. Le sue origini risalgono alla distribuzione dei numeri primi nella successione dei numeri naturali. Nel 1740 Eulero introdusse una funzione denominata con la lettera greca “zeta” (z): Riemann usò tale funzione per indagare il modello di distribuzione dei numeri primi e il suo lavoro fornì un solido legame con la geometria del piano complesso. L’ipotesi di Riemann ha implicazioni importanti per la nostra conoscenza dei numeri primi, ma anche per la sicurezza di Internet. Per lungo tempo si è nutrita la speranza che Riemann avesse lasciato un indizio sepolto da qualche parte fra i suoi appunti, ma inutilmente: non potremo mai sapere con sicurezza in che modo arrivò alle sue conclusioni. La maggior parte dei matematici ritiene che la congettura sia vera.
LA TEORIA DI YANG-MILLS E L’IPOTESI DEL GAP DI MASSA – Il secondo problema del Millennio è un enigma specifico che i matematici dovranno risolvere per dimostrarsi all’altezza della sfida lanciata loro dai fisici. La teoria di Yang-Mills (anni Cinquanta) è un primo passo verso la Grande Teoria Unificata. Nella QFT (Quantum Field Theory), la matematica coinvolge il concetto di simmetria: Yang e Mills lavorarono in questa direzione. Nessuno finora è stato in grado di risolvere le loro equazioni: i fisici le usano per formulare regole con le quali calcolare vari numeri chiave in un modo “approssimato”. “La sua soluzione segnerebbe l’inizio di un’area della matematica nuova e fondamentale, caratterizzata da profonde e importanti implicazioni con la nostra attuale conoscenza dell’universo”.
IL PROBLEMA P VERSUS NP – Per l’autore, è il problema che ha maggiori probabilità di essere risolto da un “dilettante sconosciuto”: riguarda l’efficienza che i computer possono raggiungere nell’eseguire certi tipi di compito. Riferendosi al problema del commesso viaggiatore, i matematici puri cercarono di determinare quanto efficientemente un computer potesse eseguire un particolare compito. Per distinguere i processi, i matematici proposero una classificazione dei problemi: tra quelli risolvibili in un tempo polinomiale e quelli risolvibili in un tempo esponenziale, inserirono i problemi risolvibili in un tempo polinomiale non deterministico, o per brevità NP. 
LE EQUAZIONI DI NAVIER-STOKES – Basandosi sul lavoro di Bernoulli, Eulero formulò una serie di equazioni la cui soluzione descrive il moto di un fluido non viscoso. Nel 1882 Navier introdusse nelle equazioni di Eulero una correzione e, qualche anno dopo, Stokes ne ottenne una derivazione corretta. Grazie al lavoro di Navier e Stokes, alla fine del diciannovesimo secolo sembrava che i matematici fossero sul punto di elaborare una teoria completa della fluidodinamica. Ma nessuno, finora, è riuscito a trovare una formula che risolva le equazioni di Navier-Stokes: non solo, nessuno è riuscito a dimostrare che tale soluzione esista. “I progressi compiuti verso una soluzione delle equazioni di Navier-Stokes sono stati finora talmente piccoli che il Clay Institute assegnerà il premio da un milione di dollari al risolutore di una qualsiasi delle varianti del problema.”.
LA CONGETTURA DI POINCARÉ –La congettura emerge per caso, da un errore compiuto all’inizio dell’indagine di Poincaré nella topologia. Nei primi anni del ventesimo secolo, Poincaré e altri matematici si accinsero a classificare gli analoghi delle superfici a più dimensioni, che chiamarono “varietà”. La congettura è stata dimostrata nel 1960 per varietà da cinque dimensioni in su (Smale) e nel 1981 è stata dimostrata per varietà quadridimensionali (Freedman). Manca la dimostrazione per le varietà tridimensionali. [Questo problema è stato probabilmente risolto dal russo Grigori Perelman, ma è presente una seconda dimostrazione, dell’inglese Martin Dunwoody. Non si può stabilire chi dei due abbia diritto al premio, visto che per il Clay Institute devono passare due anni dall’annuncio della dimostrazione.]
LA CONGETTURA DI BIRCH E SWINNERTON-DYER – Tale congettura riguarda le “curve ellittiche”. Una sua dimostrazione avrebbe ripercussioni su tutta la matematica moderna. Prima del 1994 non era nemmeno sicuro che la congettura avesse davvero senso.
LA CONGETTURA DI HODGE – Con ogni probabilità è il problema meno accessibile, poiché si tratta di una questione altamente tecnica e “non c’è nemmeno un reale consenso riguardo a ciò che essa effettivamente sostiene”. Una dimostrazione della congettura stabilirebbe un collegamento fondamentale fra le tre discipline della geometria algebrica, dell’analisi e della topologia. Hodge espose la sua congettura nel discorso pronunciato all’International Congress of Mathematicians, tenutosi nel 1950 in Inghilterra. Attualmente, non esiste alcuna prova che indichi la correttezza dell’intuizione di Hodge.
 
COMMENTO:
Libro interessante, anche se complesso. Uno sguardo sui problemi attuali della matematica, ma non solo: l’autore offre anche ampi panorami sulla storia della matematica, sulla sua evoluzione, su ciò che ha generato i problemi del millennio, infatti non ha come obiettivo la descrizione dettagliata dei problemi: “Il mio obiettivo consiste nel collocare ciascun problema in un suo scenario, descrivere come emerse, spiegare che cosa lo renda particolarmente difficile, e darvi un’idea del perché i matematici lo considerino tanto importante”.

Informazioni aggiuntive

  • Autore: Devlin Keith
Letto 3968 volte Ultima modifica il Martedì, 06 Agosto 2013 07:46

1 commento

  • Link al commento Umberto Esposito Giovedì, 01 Agosto 2013 08:01 inviato da Umberto Esposito

    Onofrio Gallo (n.1946), il matematico italiano autore del Teorema Mirabilis di Gallo (prima dimostrazione per via diretta e originale dell'Ultimo teorema di fermat e che numerosi teoremi (Teorema di Pitagora,Teorema di Galois, Ultimo Teorema di Fermat, Teorema Fondamentale dell'Algebra ecc,) e il col in matematica, ha dichiarato recentemente di aver risolto la Congettura di Birch e di Swinnerton- Dyer trovando le condizioni necessarie e sufficienti affinchè qualsiasi equazione ellittica (associata alla rispettiva funzione ellittica) sia risolubile. Il suo autore ha anche dichiarato che non intende né divulgare la sua dimostrazione della congettura da lui risolta, né il CLAY-PRIZE di un milione di dollari, finchè il suo Teorema Mirabilis non verrà riconosciuto come il dalla comunità matematica internazionale.
    Il teorema Mirabilis di Gallo e le sue si trovano sin dall'anno 2004 nella sua fondamenatle memoria "New On The Number Theory" presso il Comitato del Premio Abel dell'Accademia Norvegese delle Scienze e delle Lettere.
    Per altre info [email protected]

Lascia un commento

Assicurati di inserire (*) le informazioni necessarie ove indicato.
Codice HTML non è permesso.