Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Giovedì, 01 Agosto 2013 13:18

Com'è bella la matematica

Vota questo articolo
(0 Voti)
TRAMA:
Le lettere sono indirizzate a Meg e seguono il suo percorso scolastico, dalle scuole superiori fino a un incarico universitario. La matematica delle superiori non ha molto a che fare con la matematica di più alto livello, ma è necessaria per potervi accedere, perché essa “richiede una grande quantità di nozioni fondamentali e di tecnica”. E nonostante la ricerca continui a progredire, esistono ambiti in continua espansione: “lo spazio per la ricerca è così sconfinato, che sarà difficile stabilire da dove partire o quale direzione prendere”. La matematica fugge la rigidità, richiede grande immaginazione, fa sorgere sempre nuove domande con il progredire della conoscenza: “se fosse un edificio sarebbe una piramide costruita al contrario, con una base molto stretta e ogni piano più ampio del sottostante. Più l’edificio è alto, più c’è spazio per costruire”. 
“Incontriamo dei matematici ogni giorno e in ogni luogo, ma raramente ce ne rendiamo conto”: la matematica permette di vedere l’universo in modo diverso, aprendo gli occhi di chi la studia, ma tutto questo non è possibile senza insegnanti che la presentino “come una disciplina multiforme, creativa, originale e sempre nuova”.
All’inizio del percorso universitario, con il timore del nuovo cammino che le si prospetta, Stewart offre a Meg “un’idea cui aggrapparsi nei momenti più difficili”: le parla delle proprie passeggiate in Texas e della matematica che studia le simmetrie della natura. Come hanno fatto i matematici a pensare quelle cose? Qual è il metodo di studio più adeguato? Rifacendosi all’esperienza di Poincaré, Stewart propone un metodo di studio, in base al quale è meglio non soffermarsi troppo sulle cose che non si capiscono, perché anche ciò che in un primo momento non è chiaro può sempre chiarirsi in seguito. 
E le dimostrazioni? Nella vita universitaria, a differenza delle superiori, le dimostrazioni sono onnipresenti e si fatica a capire l’accanimento dei matematici per questo aspetto della disciplina, ma “I matematici hanno bisogno delle dimostrazioni per ragioni di onestà”. I computer, al contrario di quanto si è portati a credere, non aiutano nella dimostrazione, se non laddove si devono enumerare tutti i casi possibili. La dimostrazione è come una narrazione: le dimostrazioni più difficili sono il “Guerra e pace” della matematica.
Stewart prosegue suggerendo a Meg il metodo migliore per diventare un matematico famoso, mettendola in guardia dalle difficoltà dei problemi più famosi, descrivendo i gradini della carriera, indicandole come scegliere il proprio supervisore.
Le propone la scelta, che le si presenterà al termine degli studi universitari, fra la matematica pura e quella applicata e, sostenendo che ormai è una distinzione sterile, senza senso, racconta di come sia sorta (risale solo agli anni ’60) e sottolinea come i due aspetti non possano esistere separatamente: alla matematica pura mancherebbe “la vera forza creativa della matematica [che] sta nei suoi legami con il mondo naturale”, ma anche quella applicata “ha bisogno di diventare generale e astratta, altrimenti non farebbe nessun progresso”. 
Raccomanda a Meg di leggere, di tenere “la mente sveglia e le antenne dritte”, per lasciare spazio alle nuove idee originali che potranno aprire la via ad una nuova ricerca. Parlandole della comunità matematica, della necessità di un respiro internazionale, per una disciplina che solo apparentemente si svolge nel chiuso di uno studio e in solitudine, la invita a aprire “bene le orecchie al momento del caffé”, per approfittare della collaborazione che, per quanto difficoltosa, è l’anima della ricerca. 
Nell’ultima lettera, Stewart affronta il discorso dell’Universo, del ruolo di Dio all’interno di esso e spiega a Meg che se Dio può essere considerato un matematico “ogni tanto ci permette di sbirciare da dietro le sue spalle”.
 
COMMENTO:
Come dichiara lo stesso autore, il testo è un “tentativo di aggiornare alcune parti del libro di Hardy”, Apologia di un matematico. E in effetti in molte pagine sembra che l’autore stia dibattendo con Hardy, come quando spiega il motivo per cui non ha più senso contrapporre la matematica pura a quella applicata.
Il libro è ottimo sia per gli insegnanti, sono numerosi e costruttivi gli spunti offerti e le critiche presentate, che per gli studenti, grazie ai suggerimenti per trovare il proprio metodo di studio. Offre un’ottima descrizione della matematica, attraverso semplici metafore, comprensibili per tutti. Più complessa è la seconda parte, quando, in conseguenza all’approfondirsi degli studi di Meg, l’autore si addentra nei particolari del mondo matematico, non tralasciando di descrivere, con una buona dose di ironia, la vita accademica e le piccole e grandi manie di famosi matematici. 
Interessanti le digressioni autobiografiche, che, inserendosi nel ritmo della narrazione, danno un tono di leggerezza agli argomenti trattati.

Informazioni aggiuntive

  • Autore: Stewart Ian
Letto 2467 volte Ultima modifica il Martedì, 06 Agosto 2013 07:45

Lascia un commento

Assicurati di inserire (*) le informazioni necessarie ove indicato.
Codice HTML non è permesso.