Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Libri

Libri (198)

Giovedì, 01 Agosto 2013 07:31

La misura del mondo

TRAMA:
La vita di Alexander von Humboldt viene presentata a partire dall’infanzia: minore di due fratelli, il primo diventa un famoso filologo, si raccontano i dispetti che gli vengono fatti dal fratello. Dopo aver studiato finanza all’Università di Francoforte, alla morte della madre, Humboldt si sente libero di partire e, dopo aver dato le dimissioni dall’incarico di assessore, parte per Weimar, poi procede per Salisburgo, dove acquista gli strumenti necessari per le misurazioni in Sudamerica e resta un anno in Austria per esercitarsi all’utilizzo degli strumenti. Si reca a Parigi, dove è ospite del fratello. Inizialmente doveva partire, per un viaggio intorno al mondo, con Baudin, che però fugge con i soldi. Incontra Aimé Bonpland, medico, naturalista, botanico francese, che doveva partire anche lui nella spedizione di Baudin. Insieme partono per la Spagna. A Madrid, ottengono udienza con Manuel de Urquijo, amante della regina e ministro. A La Coruna prendono una fregata per la via dei Tropici. Giungono a Tenerife e poi in Nuova Andalusia, dove in sei mesi esaminano e misurano tutto il misurabile. Sta per elaborare un nuovo concetto di geografia e approfitta dell’eclissi per effettuare ulteriori misurazioni.
A Caracas compiono l’ascesa della Silla e poi, in sella a dei muli, partono alla volta dell’Orinoco. Nella città di San Fernando vendono i muli, comprano una barca a vela e scelgono quattro uomini che li accompagnino. Durante la navigazione lungo l’Orinoco, la vegetazione diventa sempre più fitta e, quando raggiungono le famigerate cateratte, i gesuiti della missione locale mettono a loro disposizione degli indigeni che possano aiutarli. Oltre le cateratte, il fiume diventa molto stretto e rapide vorticose fanno mulinare la barca. Procedono per rio Negro e a San Carlos raggiungono l’equatore magnetico. Raggiungono l’ultimo insediamento, la missione Esmeralda e, poco oltre, decidono di rientrare. Cercano poi di salire sul Chimborazo, ma non raggiungono la cima, anche a causa del mal di montagna che li affligge. 
Durante il viaggio in nave per raggiungere la Nuova Spagna, vengono sospinti alla deriva da un’eruzione del vulcano Cotopaxi. Salgono al Popocatepetl, visitano le rovine di Teotihuacan, si recano sul vulcano Jorullo, dove Humboldt si fa calare nel cratere e sconfessa la teoria del nettunismo. Prende poi una nave per l’Avana e infine per Philadelphia. Qua viene portato a Washington, dove incontra il presidente della repubblica. Rientra infine a Parigi.
Gauss ha una vita meno avventurosa: vive un’infanzia molto povera, essendo figlio di un giardiniere, ma il maestro di scuola, nonostante la sua severità, si rende conto della predisposizione per la matematica del su o allievo, dopo che questi risolve in pochi minuti il problema di addizionare tutti i numeri da uno a cento. Sempre grazie a lui, viene ammesso al liceo, ed incontra il duca di Brunswick, che si occupa di mantenerlo. Poi fa una scoperta che cambia il corso della sua vita, ovvero riesce a disegnare un poligono regolare di 17 lati, con l’aiuto di soli riga e compasso. Proprio in seguito a questo, Gauss decide di occuparsi solo di matematica. Dopo la sua laurea, per problemi economici, si occupa dell’agrimensura, per riuscire a mantenersi. Proprio durante questo suo lavoro per le campagne conosce Johanna, che in seguito diventa sua moglie. E mentre lavora, ha anche l’ispirazione per scrivere la sua opera più importante, le Disquisitiones Arithmeticae. Riesce a individuare dove il pianetino Cerere sarebbe riapparso e quando e diventa famoso, visto che l’astronomia è una scienza popolare: chi scopriva una stella era un grand’uomo. Il duca lo convoca e gli propone di diventare direttore dell’osservatorio che vuole fondare, ma Gauss chiede un po’ troppo e il duca non si decide a far la sua proposta. Si sposa e si trasferisce a Gottinga, dove, dopo avergli dato tre figli, la moglie muore. Successivamente decide di sposarsi con Minna, amica un po’ ottusa della moglie, la quale gli darà tre figli. 
Gauss iIncontra von Humboldt nel 1828, a Berlino, dove si reca con il figlio Eugen per il Congresso degli scienziati tedeschi. Gauss si sta occupando delle statistiche di mortalità, mentre Humboldt è ciambellano. Vagando per le strade di Berlino, il figlio di Gauss si ritrova coinvolto in un’assemblea di studenti e viene catturato dalla gendarmeria; il padre e Humboldt intervengono per liberarlo, ma fanno più male che bene. Mentre il padre comincia la sua collaborazione con Weber e i suoi studi sul magnetismo e Humboldt compie un deludente viaggio in Russia, Eugen riesce ad ottenere l’esilio e si reca in America, dove, senza la forte invadenza del padre, forse riuscirà a crearsi una sua vita.
 
COMMENTO:
Un modo originale e simpatico per presentare la biografia di due grandi. Dal punto di vista storico, non ci sono inesattezze e gli aneddoti che imperlano la loro vita fanno sentire ancora più vicini i due personaggi. Il testo è scorrevole, anche se dà l’idea di una narrazione senza pause, quasi di un fiume in piena che fatica a mantenersi negli argini, tanto che anche il discorso diretto non esiste: è una specie di discorso diretto, nella forma indiretta ma senza virgolette. 
La lettura è stata molto coinvolgente e mi ha permesso sia di scoprire cose che non conoscevo, sia di ritrovare aneddoti e episodi, che invece mi erano noti. Consiglierei la lettura a quanti amano il mondo scientifico e soprattutto a coloro che se ne sentono attratti ma al tempo stesso respinti: il libro è leggero e poco impegnativo (nel senso positivo dei termini), perciò alla portata di tutti.
Giovedì, 01 Agosto 2013 07:19

L'uomo che sapeva contare

TRAMA:
Un giovane persiano di nome Beremiz Samir, nato nel villaggio di Khoi ai piedi del monte Ararat, lavorava come pastore al servizio di un ricco signore di Khamat. Per timore di perdere qualche elemento del gregge, Beremiz contava ogni giorno, più volte al giorno, tutte le pecore e divenne quindi molto abile nel contare, tanto da poter contare gli uccelli di uno stormo, le api di uno sciame, le formiche di un formicaio, con una sola occhiata. Per questo motivo, il padrone lo mise a sovrintendere alla vendita dei datteri e, dopo quasi dieci anni di servizio, gli concesse quattro mesi di riposo. Egli decise di recarsi a Baghdad per visitare i parenti e ammirare le moschee e i palazzi.
Durante questo viaggio incontrò Hanak Tade Maia, voce narrante della vicenda, nonché suo fedele amico. Durante il viaggio, Beremiz risolse i quesiti matematici che gli venivano via via proposti e in questo modo riuscì a ottenere numerosi privilegi: un cammello, un magnifico anello d’oro con pietre preziose nere, un turbante blu… diventò anche segretario del visir Ibrahim Maluf!
La sua fama si diffuse sempre più velocemente e lo sceicco Iezid Abul Hamid gli chiese di insegnare le proprietà dei numeri a sua figlia Telassim, per preservarla dalle tragiche disgrazie che un famoso astrologo aveva previsto per lei al momento della sua nascita. Beremiz, che in passato fu istruito da un vecchio derviscio di nome Nô-Elim, al quale aveva salvato la vita durante una violenta tempesta di sabbia, accettò volentieri. Cominciarono così le lezioni: una spessa e pesante tenda di velluto rosso che pendeva dal soffitto fino al pavimento impediva a Beremiz di vedere la sua allieva, che si mostrava in ogni caso attenta e intelligente. 
Beremiz si guadagnò presto anche i favori del Califfo, nonostante l’invidia di alcuni cortigiani che tentarono più volte di metterlo in cattiva luce e di tendergli agguati. 
La prima sera dopo il Ramadan, il Califfo preparò una strana sorpresa per Beremiz: avrebbe dovuto confrontarsi pubblicamente con sette matematici. Poco prima della prova, lo sceicco Iezid intervenne per riportare a Beremiz l’anello che aveva smarrito durante una lezione a Telassim, al quale è legato un biglietto da parte di Telassim stessa, e un tappeto preparato dalla donna, sul quale erano stati ricamati alcuni versi d’amore che solo Beremiz potesse capire. Beremiz rispose senza problemi a tutte le domande e al termine il Califfo gli propose di richiedere qualsiasi cosa volesse. Egli chiese la mano di Telassim, ma prima di concedergliela, il Califfo gli propose un ultimo quesito, al quale Beremiz rispose positivamente. 
Nel 1258, i barbari assediarono la città di Baghdad: lo sceicco Iezid morì in battaglia, il Califfo fu preso prigioniero e decapitato. La città fu saccheggiata e rasa al suolo. Ma Beremiz, la sua famiglia e il suo fedele amico erano ben lontani: a Costantinopoli, con sua moglie e i loro tre figli, Beremiz viveva felice.
 
COMMENTO:
Una favola con la matematica come protagonista. E l’Uomo che Sapeva Contare incarna proprio tutte le caratteristiche del matematico: intelligente, con mille risorse e la risposta pronta, ma soprattutto al di sopra di ogni immoralità.
Una delle ricchezze del libro è data dai giochi logici che percorrono ogni episodio: in questo modo, chi affronta la lettura può scegliere se leggere direttamente le risposte dell’Uomo che Sapeva Contare o interrompere per un momento la lettura, tentando di rispondere per proprio conto ai quesiti.
Giovedì, 01 Agosto 2013 07:15

L'ultima storia di Miguel Torres da Silva

TRAMA:
Nel Portogallo del 1772, Manuel, nipote di Miguel Torres da Silva, morto da poche settimane, lascia la sua casa e la sua famiglia, per andare a Coimbra, a studiare matematica all’università e per ritrovare anche la fine della storia che il nonno stava raccontando quando è morto. Per decisione del nonno, a Coimbra avrebbe “esplorato i segreti dei numeri”. Comincia a frequentare il seminario del prof. Ribeiro, dal quale riesce subito a farsi notare: il professore lo convoca nel suo ufficio e comincia così un rapporto di amicizia tra i due. 
Impegnato nel tentativo di riportare alla luce dentro di sé le storie raccontate dal nonno, Manuel  si chiude in biblioteca, ma non riesce a ottenere niente di buono. Il professore gli consiglia di recarsi al mercato, in mezzo alla gente, dove c’è confusione: “la biblioteca è il luogo dei pensieri ordinati, delle storie stampate, il luogo della lettura e dell’apprendimento”, invece è nel “coro di voci [che] si inserirà anche la voce del nonno”. È proprio frequentando il mercato che Manuel incontra Maria, figlia di un mercante di stoffe. In realtà, è lei a cercarlo, perché vuole conoscere il nipote di Miguel Torres da Silva, che il padre incontrava spesso e dal quale era rimasto affascinato. Manuel, colpito dalla sua bellezza, decide di aspettarla l’indomani sull’uscio di casa, di seguirla e di fingere poi di incontarla per caso. Si danno appuntamento per il venerdì dopo e, proprio nel momento in cui si incontrano, Manuel le racconta una storia, come se il legame con lei avesse già sbloccato qualcosa dentro di lui ed avesse aperto la sua memoria. 
Maria è promessa sposa ad un altro: il loro amore continua a crescere, si frequentano di nascosto e Maria è fiduciosa: sa che riuscirà, in qualche modo, a convincere il padre a non farle sposare il promesso. In realtà, è la matematica ad aiutarli: il padre di Maria regala a Manuel una piccola maiolica ornata di decorazioni turchesi, sulla quale è riportato il numero 284. Quando, durante un suo viaggio, gli viene regalata una magnolia simile, ma con il numero 220, perché la regali alla figlia, il padre capisce che Maria deve andare sposa a Manuel: i due numeri infatti sono indissolubilmente legati, essendo una famosa coppia di numeri amici. 
Ma Manuel deve anche completare il suo cammino e si reca quindi a Porto, per accompagnare il professore. Sarà proprio nella stessa locanda di cui parla il nonno nel suo ultimo racconto che Manuel riuscirà a ritrovare la fine della storia che lo stesso stava raccontando quando è morto.
 
COMMENTO:
Si corre velocemente da una pagina all’altra, per scoprire la fine della storia che Miguel stava raccontando quando l’ha sorpreso la morte. Ma non è solo questo ad incatenare il lettore. La lettura è molto scorrevole e l’intelaiatura matematica della storia fa saltare da un capitolo all’altro, in attesa di sempre nuove sorprese e incursioni in campo matematico.
Giovedì, 01 Agosto 2013 07:11

Zio Petros e la congettura di Goldbach

TRAMA:
Zio Petros è la “pecora nera” della famiglia Papachristos: i due fratelli minori si sono impegnati nella ditta di famiglia, mentre lui si dedica al giardinaggio e agli scacchi, dopo aver sprecato il suo grande dono, il talento per la matematica.
Il nipote resta però affascinato da questo zio e, alimentato da una forte passione per la matematica, cerca il suo appoggio nel proseguimento degli studi. Al contrario delle aspettative, lo zio non sembra lusingato dall’interesse del nipote e cerca di fargli cambiare strada. Infatti, gli propone un difficile problema di matematica: se non riuscirà a risolverlo, dovrà rinunciare a studiare matematica. Al termine dell’estate, il nipote non è giunto alla soluzione del problema e lo zio gli fa firmare un foglio nel quale dichiara che non cercherà mai di ottenere una laurea in matematica.
Il nipote, sfiduciato, parte per gli Stati Uniti, dove decide di conseguire una laurea in economia. All’inizio del terzo anno di studi, il suo compagno di stanza, Sammy, studente di matematica, gli rivela che il problema che gli aveva sottoposto lo zio non era altro che la Congettura di Goldbach, uno dei tre problemi più difficili della matematica.
Il nipote, arrabbiato, chiede una spiegazione allo zio, ma lo zio risponde con uno strano telegramma. Su consiglio del compagno di stanza, il nipote decide di studiare matematica e, nel prosieguo degli studi, recupera il tempo perduto. Ma non rinuncia a scoprire il mistero dello zio, che si è dedicato per tutta la vita alla dimostrazione della Congettura di Goldbach.
Rientrato ad Atene, lo zio gli racconta tutta la sua vita: il suo giovane talento, la collaborazione con Hardy, Littlewood e Ramanujan, l’incontro con Turing, che, parlandogli del teorema di incompletezza di Gödel, assesta un duro colpo ai suoi tentativi di dimostrazione, il suo amore sfortunato per una donna che lo lascia per un giovane tenente e, alla fine, la sua decisione di rientrare ad Atene e di rinunciare alla matematica.
Il nipote non si dà per vinto: vorrebbe che lo zio riconoscesse il proprio fallimento e riesce ad ottenere da lui che gli racconti tutti i suoi progressi nella dimostrazione, dall’applicazione del metodo analitico a quello “dei fagioli”. Lo zio si infervora durante la spiegazione e, alla fine, torna alla dimostrazione: i suoi tentativi lo portano a chiudersi in se stesso e a riprendere la via che aveva interrotto. 
L’ultimo contatto con il nipote avviene poco prima della sua morte, quando lo chiama chiedendogli di presentarsi con un altro testimone, perché ha dimostrato la congettura.
 
COMMENTO:
La lettura del libro è scorrevole e veloce. La storia di Zio Petros, con il mistero che avvolge la sua vita, impone un ritmo di lettura serrato, per la curiosità di conoscere la fine della vicenda.
Interessante come lettura poco impegnata, ottimo per chi abbia un minimo di conoscenze matematiche e filosofiche e possa quindi apprezzare i riferimenti alla Crisi dei Fondamenti dell’inizio del XX secolo. I numerosi personaggi famosi, Hardy, Littlewood, Ramanujan, Turing, sono una simpatica cornice che permette di apprezzare ancora di più l’opera.