Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Libri

Libri (215)

Giovedì, 01 Agosto 2013 07:11

Zio Petros e la congettura di Goldbach

TRAMA:
Zio Petros è la “pecora nera” della famiglia Papachristos: i due fratelli minori si sono impegnati nella ditta di famiglia, mentre lui si dedica al giardinaggio e agli scacchi, dopo aver sprecato il suo grande dono, il talento per la matematica.
Il nipote resta però affascinato da questo zio e, alimentato da una forte passione per la matematica, cerca il suo appoggio nel proseguimento degli studi. Al contrario delle aspettative, lo zio non sembra lusingato dall’interesse del nipote e cerca di fargli cambiare strada. Infatti, gli propone un difficile problema di matematica: se non riuscirà a risolverlo, dovrà rinunciare a studiare matematica. Al termine dell’estate, il nipote non è giunto alla soluzione del problema e lo zio gli fa firmare un foglio nel quale dichiara che non cercherà mai di ottenere una laurea in matematica.
Il nipote, sfiduciato, parte per gli Stati Uniti, dove decide di conseguire una laurea in economia. All’inizio del terzo anno di studi, il suo compagno di stanza, Sammy, studente di matematica, gli rivela che il problema che gli aveva sottoposto lo zio non era altro che la Congettura di Goldbach, uno dei tre problemi più difficili della matematica.
Il nipote, arrabbiato, chiede una spiegazione allo zio, ma lo zio risponde con uno strano telegramma. Su consiglio del compagno di stanza, il nipote decide di studiare matematica e, nel prosieguo degli studi, recupera il tempo perduto. Ma non rinuncia a scoprire il mistero dello zio, che si è dedicato per tutta la vita alla dimostrazione della Congettura di Goldbach.
Rientrato ad Atene, lo zio gli racconta tutta la sua vita: il suo giovane talento, la collaborazione con Hardy, Littlewood e Ramanujan, l’incontro con Turing, che, parlandogli del teorema di incompletezza di Gödel, assesta un duro colpo ai suoi tentativi di dimostrazione, il suo amore sfortunato per una donna che lo lascia per un giovane tenente e, alla fine, la sua decisione di rientrare ad Atene e di rinunciare alla matematica.
Il nipote non si dà per vinto: vorrebbe che lo zio riconoscesse il proprio fallimento e riesce ad ottenere da lui che gli racconti tutti i suoi progressi nella dimostrazione, dall’applicazione del metodo analitico a quello “dei fagioli”. Lo zio si infervora durante la spiegazione e, alla fine, torna alla dimostrazione: i suoi tentativi lo portano a chiudersi in se stesso e a riprendere la via che aveva interrotto. 
L’ultimo contatto con il nipote avviene poco prima della sua morte, quando lo chiama chiedendogli di presentarsi con un altro testimone, perché ha dimostrato la congettura.
 
COMMENTO:
La lettura del libro è scorrevole e veloce. La storia di Zio Petros, con il mistero che avvolge la sua vita, impone un ritmo di lettura serrato, per la curiosità di conoscere la fine della vicenda.
Interessante come lettura poco impegnata, ottimo per chi abbia un minimo di conoscenze matematiche e filosofiche e possa quindi apprezzare i riferimenti alla Crisi dei Fondamenti dell’inizio del XX secolo. I numerosi personaggi famosi, Hardy, Littlewood, Ramanujan, Turing, sono una simpatica cornice che permette di apprezzare ancora di più l’opera.
Giovedì, 01 Agosto 2013 07:09

La misura di tutte le cose

TRAMA*:
Sul finire del XVIII secolo, centinaia di Cahier de doléances, famosi documenti di protesta, reclamavano l’armonizzazione del sistema di pesi e misure a livello nazionale: un complesso di circa ottocento parametri, radicati nelle usanze, ostacolava i commerci e incoraggiava le frodi. Perché il nuovo sistema potesse essere universale, doveva essere inconfutabile, perciò doveva essere tratto dalla natura. Il metro sarebbe stato la decimilionesima parte del tratto di meridiano terrestre misurato tra Dunkerque e Barcellona. Inghilterra e America si dissociarono: perché la natura doveva passare per forza dalla Francia? Dopo anni di discussioni, nell’estate del 1792 partì la missione per la misura del meridiano. Furono incaricati Delambre e Méchain.
Delambre era nato nel 1749 da commercianti di tessuti, ad Amiens. Méchain, figlio di un imbianchino, era nato nel 1744 a Laon. Il primo fu incaricato di misurare la parte settentrionale del tragitto compreso fra Dunkerque e Parigi, il secondo si occupò del tratto meridionale. Entrambi erano esperti in geodesia.
Delambre si scontrò con i rivoluzionari che vedevano in lui i pregi tanto osteggiati dell’Ancien Régime. Méchain fu immobilizzato per mesi da un infortunio e in seguito partì dalla Spagna con un grande dubbio, visto che due misurazioni non coincidevano. Nel giugno del 1794, salpò per Pisa. Poteva tornare a Parigi ma si trattenne a Genova, temendo l’instabilità politica. Delambre procedeva spedito sotto i cieli del settentrione.
Con l’avvento di Napoleone, sostenitore della loro causa e membro dell’Accademia delle scienze, le cose migliorarono. Il 1° luglio 1794, il sistema metrico decimale, basato su una stima provvisoria, entrò in vigore, anche se la gente era restia ad adeguarsi. 
Nel frattempo, l’autostima di Méchain era ormai minata: non riusciva a giungere a capo dei dati di Barcellona. Temeva di confidarsi, ma non poteva portare da solo il peso di un simile errore. Le energie fisiche scemavano e in tre mesi era arrivato soltanto a Carcassonne. Delambre, tra la primavera e l’estate del 1797, eseguiva le misurazioni da Evaux a Rodez, il punto d’incontro stabilito: Méchain marciva a Pradelles, vaneggiando di tornare a Barcellona per ulteriori verifiche. Per non pregiudicare la missione, Delambre si rivolse alla signora Méchain. La moglie dell’astronomo, senza preannunciare la partenza, raggiunse il marito che non vedeva da sei anni. Nel luglio, quando lo lasciò, le stazioni di Rodez, Rieupeyroux e Lagaste erano completate: gli restavano ancora pochi tratti da misurare. Era possibile congiungersi a Delambre in tempo per la conferenza internazionale di Parigi, in cui gli scienziati delle nazioni amiche, Olanda, Italia, Danimarca, Spagna e Svizzera, avrebbero verificato il lavoro per dare l’imprimatur.
Nel novembre del 1798, Méchaine e Delambre furono accolti dalla capitale come trionfatori, ma alla fine del gennaio 1799, non avevano ancora presentato i dati. Il 2 febbraio, Delambre cessò di coprire il collega e presentò il suo lavoro, che venne approvato. Laplace diede dieci giorni a Méchain, il quale ottenne di non presentare i suoi diari, giustificandosi per il disordine e offrì solo i dati sintetici. Il 22 marzo si presentò alla Commissione e ottenne l’approvazione.
La missione geodetica confermò che la terra è schiacciata, il raggio si accorcia dall’equatore al polo un centocinquantesimo, metà del valore calcolato in precedenza, inoltre i meridiani presentano un andamento irregolare. La missione non si proponeva scoperte scientifiche, perciò fu un exploit.
Il metro fu fissato una volta per tutte a 443,296 linee, contro le 443,44 di quello provvisorio. Come avrebbero rilevato i satelliti, il meridiano tra Dunkerque e Barcellona si estende per 10.002.290 metri: il metro doveva essere due millimetri più lungo. Ciò che conta è il valore convenzionale; oggi solo gli Stati Uniti, la Liberia e Myanmar ne sono fuori. Il chilo fu determinato di conseguenza come il peso di un decimetro cubo di acqua distillata, alla temperatura di 4°C, a livello del mare e a 45° di latitudine. 
L’errore di Méchain rientra nell’approssimazione necessaria anche alla scienza, ma Méchain fu vittima delle sue ossessioni: si fece affidare una missione per estendere la misurazione del meridiano a sud di Barcellona e morì, a causa della malaria, il 20 settembre 1804. Delambre poté finalmente guardare tutte le carte del collega. Si rese conto dell’errore e ne diede notizia, sia pure velatamente, nella Base, l’opera in tre tomi di resoconto della missione metrica che lo occupò quasi fino alla morte, avvenuta serenamente il 19 agosto 1822.
 
COMMENTO:
Un libro di non facile lettura e a tratti un po' noioso, vista la ricchezza di notizie, riguardanti l’evolversi della Rivoluzione Francese. Importante l’ultima parte del libro, l’ultimo capitolo in particolare, contenente alcuni commenti dell’autore, a proposito dell’evoluzione della scienza e del suo rapporto con gli errori.
 
*Trama tratta dall'articolo "Storia del metro" di Antonio Armano, riportato in "La macchina del tempo" Anno 3, n.11 - Novembre 2002, pag. 31/34
Giovedì, 01 Agosto 2013 07:07

I magnifici dieci

TRAMA:
Filippo, ragazzino di 8 anni, è molto legato al nonno, insegnante di matematica in pensione, con il quale ha un rapporto fatto di complicità. Quando torna a casa da scuola, riferisce sempre al nonno quello che la maestra Grazia gli ha insegnato e il nonno, dal canto suo, trova sempre il modo per collegarsi alla matematica e parlare un po’ di numeri. Si comincia, quindi, con il sistema di numerazione posizionale decimale, si passa attraverso l’invenzione dello zero, il sistema binario, si tocca la figura di Fibonacci, colui che ha avuto il pregio di portare in Italia le cifre arabe, ma non si dimentica nemmeno Talete e la sua misurazione dell’altezza della piramide. I pretesti per parlare di matematica sono i più vari: dalla lezione della maestra Grazia alla preparazione di una torta, con la conseguente necessità di stabilire se la teglia rotonda abbia la stessa superficie di quella rettangolare e, quindi, passando attraverso il metodo di esaustione di Archimede e gli integrali. 
Quando il nonno, però, deve andare dallo zio Mauro, perché anche gli altri nipoti reclamano la sua attenzione, Filippo crolla. Il nonno era tutto il suo mondo e si sente abbandonato. È la sorella, allora, voce narrante di questo simpatico libretto, che prende in mano la situazione e decide di stare un po’ più vicina al fratellino, per fargli sentire meno il peso dell’assenza del nonno. E così il libro si conclude con la trattazione dei frattali, una sorta di matematica “artistica”.
 
COMMENTO:
I temi sono i più disparati, ma sono spiegati in modo semplice e chiaro, libero da ogni difficoltà e al tempo stesso, con la profondità che caratterizza ogni argomento. Meno infantile rispetto al “Mago dei numeri”, meno pesante rispetto al “Teorema del Pappagallo”, può essere un’ottima lettura per un ragazzo del biennio della scuola superiore, visto che ogni argomento proposto è argomento di studio. Si legge in un attimo e aiuta nella comprensione di argomenti che possono essere sembrati complicati nella trattazione scolastica, attraverso una rivisitazione leggera e solare.
Giovedì, 01 Agosto 2013 07:06

La matematica del Novecento

TRAMA:
La trattazione della matematica moderna non è cosa facile, a causa della sua notevole astrazione, dell’esplosione produttiva che ha investito il XX secolo e della sua suddivisione in sottodiscipline sempre più numerose. La scelta di Odifreddi nella trattazione è stata quella di dare rilievo ai vincitori della medaglia Fields o del premio Wolf e ai problemi di Hilbert, ma questi non esauriscono le numerose scoperte del XX secolo.
I FONDAMENTI – La matematica porta alla luce oggetti e concetti che, al loro primo apparire, sono inusuali e non familiari. Un atteggiamento tipico, fin dai tempi dei Greci, è stato il tentativo di limitare sorpresa e disagio il più possibile, scaricando il peso dell’edificio della matematica su solide fondamenta. Nel secolo VI a.C. i Pitagorici posero a fondamento della matematica l’aritmetica dei numeri interi e razionali, poi fu la volta della geometria e successivamente dell’analisi. Nel secolo XIX il cerchio si chiuse e l’analisi fu ridotta a sua volta all’aritmetica. Ma il processo di costruzione e decostruzione non si fermò qui. La caratteristica essenziale delle nuove fondazioni è che esse si basano non più sugli oggetti classici della matematica, ma su concetti completamente nuovi.
Negli anni ’20, gli insiemi sembrarono un buon fondamento per la matematica; negli anni ’40, un gruppo di matematici francesi, Bourbaki, trovò una soluzione in un’analisi non più logica ma strutturale; negli anni ’60, si arriva al concetto di categoria, che contiene come casi particolari sia gli insiemi che le strutture. Nessuno dei tre approcci è però soddisfacente dal punto di vista degli informatici, che hanno trovato una fondazione alternativa nel Lambda Calcolo proposto da Church. 
MATEMATICA PURA – Per millenni la storia della matematica è stata la storia dei progressi nella conoscenza di entità numeriche e geometriche. Negli ultimi secoli invece e soprattutto nel XX sec. sono venute alla luce nuove e disparate entità, che hanno acquistato una loro indipendenza, e ispirato quella che è stata chiamata una nuova età dell’oro della matematica. Se, da un lato, la matematica moderna è dunque il prodotto di uno sviluppo che affonda le sue radici in problematiche concrete e classiche, dall’altro essa è anche la testimonianza di un’attività che trova la sua espressione in costruzioni astratte e contemporanee.
MATEMATICA APPLICATA – Le applicazioni della matematica hanno costituito una caratteristica costante della sua storia e ciascuna branca della matematica classica è stata, ai suoi inizi, stimolata da problemi pratici. La matematica del secolo XX in questo non fa eccezione. Alcune di queste motivazioni derivano da aree scientifiche la cui fertilità è sperimentata, quali la fisica; altre motivazioni derivano invece da aree che solo nel secolo XX sono diventate scientifiche, come l’economia e la biologia.
MATEMATICA AL CALCOLATORE – Il calcolatore sta cambiando sostanzialmente la vita quotidiana, non solo dell’uomo comune, ma anche del matematico. 
La prima applicazione matematica della nuova macchina fu, naturalmente, l’utilizzo dei suoi poteri computazionali. È però nella matematica applicata che gli usi del calcolatore stanno provocando gli effetti più visibili. L’utilizzo del calcolatore ha permesso di risolvere lo studio dei sistemi dinamici, portando alla nascita della teoria del caos, ma non si possono certo tacere gli sviluppi della grafica computerizzata: con l’ausilio visivo, sono state scoperte nuove superfici e le immagini più note sono quelle dei frattali. 
PROBLEMI INSOLUTI – La matematica è sostanzialmente un’attività di proposta e di soluzione di problemi e la loro scorta è inesauribile, anche perché le soluzioni ne pongono spesso di nuovi. I matematici ritengono comunque che i problemi che essi si pongono non soltanto siano risolubili, ma anche che saranno, prima o poi, effettivamente risolti. Una soluzione accettabile di un problema matematico può essere anche una dimostrazione della sua insolubilità. Naturalmente, soluzioni negative punteggiano l’intera storia della matematica, ma è stato nel secolo XX che il fenomeno ha raggiunto massa critica, anche grazie alla sua chiarificazione attraverso il teorema di Gödel.
 
COMMENTO:
Libro interessante, anche se non di facile lettura, soprattutto se non si ha una buona preparazione in matematica. Sarebbe bene seguire l'indicazione dell'autore, che suggerisce di leggere il libro due volte: in effetti, con una seconda lettura, è possibile ottenere una migliore visione d'insieme e capire i collegamenti che vengono fatti. Inoltre, pregevole il fatto che il libro si presti ad una lettura non necessariamente lineare: si può infatti scegliere di leggere il libro solamente "piluccando" quelli che sembrano i paragrafi più interessanti. 
Su tutto, vorrei ricordare l'ottima prefazione di Gian Carlo Rota, interessante e divertente, che offre uno spaccato della matematica un po' diverso da quello cui ci hanno abituato a scuola.