Domenica, 12 Gennaio 2025 09:09

Errori del 2025

Come uno studente davanti al titolo del tema, osservo il foglio bianco davanti a me e non so cosa scrivere.

2025 è il tema di questo Carnevale.

Da quando è cominciato il nuovo anno, mi sono piovuti addosso video e messaggi di tutti i tipi: dal teorema di Nicomaco di Gerasa, dimostrato per induzione dal canale Mathematical Visual Proofs (e condiviso con la scorsa newsletter), alle varie catene girate anche su Whatsapp, vista la “magia” di 2025, quadrato perfetto, ma anche difettivo. Cosa si può aggiungere di davvero originale a questo anno definito matematico, matemagico e chissà in quale altro modo matematico-riferito?

Osservo le cifre di 2025: posso scrivere 12 numeri diversi, il più piccolo 0225 e il più grande 5220, ma ci sono solo due quadrati, 0225 e 2025, e la somma delle cifre è 9. Quest’ultima affermazione era prevedibile, visto che 2025 è divisibile per 9, ma, per qualche motivo, questa cosa mi resta in testa.

2+0+2+5=9

9

Come la prova del 9… raccontata così bene nel libro di Bruno Jannamorelli La misteriosa prova del 9.

Ho scoperto solo in tempi recenti che la prova del 9 si può applicare anche all’addizione, alla sottrazione e alla divisione, oltre che alla moltiplicazione (l’unica che conoscevo e applicavo). La prova permette di individuare gli errori di calcolo, ma nasconde anche tanto altro e vale la pena riprendere qui il discorso presentato nella newsletter #172 del 23 aprile 2021: Davide e Riccardo del MATH-segnale, dopo essere partiti dalla prova del 2, mostrano i passaggi della prova del 9 per la moltiplicazione, con la collaborazione di Gianluca Zanzottera, e poi procedono a mostrare per quale motivo si basi il ragionamento sul resto del prodotto dei resti, per verificare la correttezza del risultato.

Nella descrizione trovano posto sia il calcolo letterale che l’aritmetica modulare, con dovizia di particolari e chiarezza. Oltre alla prova del 9 per l’addizione spiegata da Gianluca Zanzottera, nella newsletter ho condiviso anche un bellissimo articolo di Alberto Saracco, scritto per MaddMaths!, Apologia delle prove, nella quale il noto divulgatore spiega innanzi tutto perché non sia il caso di utilizzare la calcolatrice per verificare un calcolo e mostra poi come anche la calcolatrice che sembra più affidabile, come il foglio elettronico di Excel, sia in realtà facile agli errori. Alla paura di sbagliare, leva degli spesso maldestri tentativi di evitare il calcolo, dedica un intero paragrafo: «Abbiamo tutti un’enorme paura di sbagliare. Ci piace mostrarci bravi e infallibili. Ammettere la nostra fallibilità e i nostri errori è spesso un problema. Però sbagliamo tutti. Ed è naturale sbagliare. Anzi, può essere persino utile. Senza errori non impariamo. In effetti se non facciamo mai errori, vuol semplicemente dire che stiamo facendo cose troppo facili e non ci stiamo impegnando su qualcosa di sufficientemente stimolante. Spesso inoltre la scoperta di un errore può essere da guida per vedere qualcosa sotto una nuova luce e imparare qualcosa di nuovo. Per poi sbagliare ancora, ma sbagliare meglio.» Anche Alberto Saracco dedica grande attenzione alle prove di verifica, come la stima dell’ordine di grandezza e la prova dell’11, ma mi piace in particolare ciò che il professore dice ai propri studenti: «Tutti possono commettere stupidi errori di conto, ma se non sprechi 30 secondi per fare una prova banale che ti avrebbe fatto scoprire che hai fatto un errore, non è più un banale errore di conto, ma è qualcosa di più grave.» Prima di chiudere ricorda che la verifica dei risultati è un modo per «acquisire una competenza matematica».

 

Al primo gennaio, fatico a sentire l’ansia e l’eccitazione dei nuovi inizi: per me, complice il ritmo dell’insegnamento, il vero inizio è quello dell’anno scolastico, che si apre il 1° settembre. Ogni inizio è carico di aspettative per ciò che dovremo affrontare, e non mancano previsioni (astrologiche o meno) per riuscire in qualche modo a rassicurare tutti noi in merito al futuro che ci aspetta. Personalmente ritengo che ogni nuovo anno regali una sola sicurezza e mi piacerebbe in tal senso rubare e parafrasare «The paradox of the preface» citato da Piergiorgio Odifreddi nel libro C’era una volta un paradosso. Se consideriamo i primi giorni di gennaio come l’introduzione del nuovo anno, potremmo dire che questo anno conterrà almeno un errore e si tratta di una facile previsione, in effetti. Ci si potrebbe aspettare che per sapere se ci saranno errori nel corso dell’anno sia necessario arrivare alla fine, ma invece lo sappiamo già fin dai primi giorni che ci saranno errori (e non solo perché, probabilmente, ne avete già fatti a profusione come me…): infatti, se ci sono errori, ci sono. E se non ce ne sono, l’errore sarà stato quello di dire che quest’anno conterrà almeno un errore.

Speriamo di riuscire a individuarli con una semplice prova del 9, ma, in ogni caso, che il 2025 possa essere un anno ricco di errori, matematici e non, perché, come ricorda Alberto Saracco: «Senza errori non impariamo. In effetti se non facciamo mai errori, vuol semplicemente dire che stiamo facendo cose troppo facili e non ci stiamo impegnando su qualcosa di sufficientemente stimolante».

 

PS: Ho appena finito questo breve post e, mentre sto cercando immagini da inserire che richiamino l'errore scrivo "errore" in Google immagini e mi imbatto nell'articolo del 27 dicembre 2020 di Vittorio Pelligra scritto per Il Sole24Ore, dal titolo Perché sbagliare non sempre è un errore. Pelligra ha usato il tema dell'errore per «rappresentare in modo sintetico ma evocativo questo anno passato [il 2020], così anomalo e tragico ma, allo stesso tempo, anche foriero di novità e timide speranze [...] un tema che, contemporaneamente, potesse offrire la possibilità di riflettere [...] sulle sfide che il futuro prossimo ci presenta, sui rischi e sulle opportunità che ci si pongono innanzi e che dovremmo al più presto iniziare a sfruttare al meglio». Buona lettura!

Letto 68 volte Ultima modifica il Domenica, 12 Gennaio 2025 09:51
Altro in questa categoria: « Origami e goniometria

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy