Venerdì, 15 Marzo 2024 11:39

219 - 14 marzo 2024

Pi greco!
Ho rimandato l’uscita di questa newsletter fino ad oggi, per poterla inviare proprio in occasione del Pi-Day! Perciò, al centro della scena non può che esserci la Giornata Internazionale della Matematica, che si festeggia dal 2019, proclamata dall’UNESCO e curata da un progetto dell’Unione Matematica Internazionale. Il tema di quest’anno è Playing with Maths – Giocare con la matematica ed è particolarmente interessante la Sfida Creativa proposta, «atta a vedere la matematica nel nostro ordinario, a riconoscere schemi in quello che vediamo tutti i giorni e immortalarli in un’istantanea»: hanno partecipato numerose scuole e alcune delle fotografie ispirano davvero matematica e spingono a realizzare qualcosa di unico. Il poster di quest’anno è bello e colorato, con sei indovinelli e giochi da risolvere. Sul sito di MaddMaths! è possibile vedere l’elenco degli eventi italiani.
MaddMaths! propone anche la terza edizione del CALENPLARIO: Riccardo Moschetti e Roberto Zanasi propongono una serie di problemi, riveduti da Maria Angela Chimetto e Sergio Zoccante, ogni tre giorni, (il martedì, il giovedì e il sabato) alle 3:14, dal 14 marzo fino al 28 giugno. Sarà possibile iscriversi e partecipare insieme ad altre persone. 

Pi greco in video
Non posso non condividere alcuni filmati realizzati da Mathematical Visual Proofs, il canale che si occupa di dimostrare per immagini alcuni risultati matematici. Il primo video è molto efficace nel mostrare l’area del cerchio usando il metodo di esaustione, e sfogliando il cerchio come se fosse fatto da una serie di strati che appaiono quasi impalpabili. Il secondo video è un’approssimazione molto grezza di pi greco: considerando una griglia quadrata di 101 punti con coordinate intere, colorando in blu i punti con coordinate prime tra loro e facendo il rapporto tra il numero dei punti blu e il totale dei punti, si ottiene sei volte il reciproco del quadrato di pi greco, grazie al quale si ottiene l’approssimazione di 3,12. Questa approssimazione mi ha ricordato, in qualche modo, quella proposta al Senato dello stato dell’Indiana, il 12 febbraio del 1897. Stando a Christopher Waldo, della Purdue University, quando nel 1916 l’Accademia delle Scienze dell’Indiana ha deciso di celebrare il proprio secolo di vita realizzando un volume con il quale sarebbero stati ripercorsi i maggiori risultati scientifici, Waldo ha citato un «singolo atto di prevenzione [che] rende maggior merito all’Accademia delle scienze dell’Indiana […] di qualsiasi contributo che abbia mai pubblicato o che possa mai pubblicare in futuro sui propri resoconti». Il risultato è quello di aver impedito che passasse una legge assurda, come gli stava raccontando un senatore, certo che fosse imminente un evento storico importante: «“Se passa questo emendamento – gli dice testualmente – stabiliremo per legge un nuovo e finalmente corretto valore di p. Pensi, professore: l’autore offre al nostro Stato gratuitamente l’utilizzo di questa scoperta nei nostri testi scolastici, mentre tutti gli altri Stati dovranno pagarci i diritti.”» Sul numero 61 di Prisma, in edicola da pochi giorni, è possibile leggere l’intero articolo di Marco Malvaldi: offre l’occasione per un’interessante riflessione sui bias cognitivi e sollecita la nostra attenzione sul rischio di fare affermazioni certe «su problemi dei quali abbiamo una comprensione troppo limitata anche solo per capire come sono sorti».
Magari se non vi piace 3,12 come approssimazione e non apprezzate nemmeno la proposta dello stato dell’Indiana, potete sempre scegliere di considerarlo uguale a 2: si parte da un semicerchio di raggio 1 e, quindi, di lunghezza pi/2, poi si costruiscono altri due semicerchi con raggio pari alla metà del precedente, ma in cui la somma delle semicirconferenze dà sempre lunghezza pi/2 e così via, fino a mostrare che le semicirconferenze si confondono con il diametro. Un po’ come nel caso della radice quadrata di 2 che diventa uguale a 2, confondendosi con l’ipotenusa. Eppure, se ingrandiamo l’immagine o se la guardiamo con gli occhi della matematica, scopriamo che la realtà non è come appare. Il quarto video confronta e^pi e pi^e, usando un ramo di iperbole e un piccolo integrale, mentre il quinto, comparso oggi, offre cinque diverse formule di pi in pi/2 minuti e usando solamente il disegno di un rettangolo di dimensioni 2 e 3, con quattro triangoli al suo interno. 

Pi greco e il carnevale della matematica
Il carnevale della matematica di marzo è uscito proprio questa mattina, alle 3.14: ospitato sul blog Dropsea, quindi da Gianluigi Filippelli, amministratore e divulgatore per il sito Edu INAF e per l’Osservatorio Astronomico di Brera, ha per tema, ovviamente, il pi greco. Presentato attraverso un video, nel quale ci vengono raccontate le caratteristiche del numero 176, è davvero ricco di contenuti, spunti, curiosità. L’articolo con il quale ho partecipato è intitolato Cerchi fra i banchi e di fatto è un percorso, fatto per immagini e ricco di file Geogebra, tra le indicazioni ministeriali della seconda liceo scientifico. Ho cominciato con la rappresentazione a colori di 180 cifre del pi greco, e ho proseguito con alcune costruzioni geometriche realizzate con Geogebra, dalla circonferenza per tre punti non allineati, alla costruzione delle tangenti da un punto esterno, ai punti notevoli di un triangolo, fino ad arrivare al cerchio dei 9 punti, che mi ha ricordato un’opera di Lanfranco Bombelli citata nel libretto Il cerchio di Bruno Munari. La conclusione ha per protagoniste le lunule di Ippocrate, il logo della Mathesis e un paio di giochi proposti nella competizione Matematica senza frontiere. 

Playing with Maths
Seguendo il tema della Giornata Internazionale, IlariaF Math ha deciso di riprendere le dirette sul suo canale, aprendo la rassegna il 7 marzo scorso con Paolo Alessandrini, autore del libro Matematica in campo. Dopo la domanda di rito su cosa sia per Paolo la matematica, e vi spoilero subito che non poteva che definirla un gioco (anche se non aggiungo altri dettagli), Paolo ha parlato di bellezza e di efficacia. Poi, seguendo il tema del libro, Paolo ha raccontato come il gioco del calcio porti con sé, oltre all’ovvia fluidodinamica, al moto parabolico e alla geometria del fuorigioco, anche la topologia, i poliedri (visto che il pallone è un poliedro!), il calcolo combinatorio e tanto altro. Come sempre, Ilaria è un’ottima padrona di casa e Paolo ha sempre un sacco di curiosità con cui intrattenere il pubblico: se vi siete persi la diretta, dovete assolutamente guardarlo! Stasera, alle 20.45, avrà luogo la seconda diretta, durante la quale Ilaria intervisterà Daniele Aurelio, fisico, insegnante, componente del gruppo Physics4Teenagers e coordinatore del Mathsjam di Pavia, l’unico attivo in tutta Italia.
Un paio di settimane fa, Davide Calza e Riccardo Moschetti hanno pubblicato un nuovo video per il Math-Segnale: si tratta dell’analisi matematica del problema numero 15 del World Math Championship del 2022. Il gioco è davvero interessante e la capacità di Davide e Riccardo di tirarne fuori un problema di carattere generale e di riuscire a dimostrarlo in modo semplice non manca mai di meravigliarmi. La descrizione del video è sufficiente a farci incuriosire: «La sfida tra Alice e Bob sembra quasi impossibile. Senza avere praticamente nessuna informazione, e bendata, Alice dovrà trovare il modo di girare tutte le pedine della scacchiera in modo che abbiano lo stesso colore, tutto questo mentre Bob può modificare in continuazione il tavolo da gioco. Come farà?» L’algoritmo descritto mi ha ricordato, in qualche modo, la sequenza di mosse per risolvere il cubo di Rubik e, visto che mia figlia dodicenne è un’appassionata, ho deciso di farle vedere il filmato: come risultato, si è presentata con una benda, una griglia quadrata 2x2 e quattro dischi colorati, chiedendomi di fare Bob. Conoscendo il gioco, ho cercato di renderle le cose difficili, scegliendo la configurazione migliore, ma il risultato è stato che è riuscita a vincere in 7 mosse! 

Consigli di lettura
Dall’ultima newsletter ho realizzato tre recensioni: la prima riguarda due libri per ragazzi, A Pisa con Galileo e A Cambridge con Newton, scritti da Silvia Merialdo, con le illustrazioni di Gaia Aloisio ed Emanuela Carbonara. La protagonista è Andrea che con Galileo Galilei va alla scoperta dell’universo e con Newton della gravità, passeggiando con loro nei luoghi dove hanno vissuto. I due scienziati vengono descritti a tutto tondo, tanto che non può che infastidire il carattere litigioso e un po’ burbero di Newton. Semplici, chiari e simpatici, i due racconti contribuiscono ad avvicinare alla scienza i giovani lettori, stimolandone la curiosità.
La seconda proposta è un testo di non facile reperimento, trattandosi di Ultima lezione a Gottinga di Davide Osenda. È un fumetto, pubblicato nel 2009, impreziosito dall’introduzione di Piergiorgio Odifreddi, anche grazie al fatto che le tavole sono state esposte in versione gigante sui muri dell’auditorium di Roma durante il Festival della Matematica. La seconda presentazione è di Andrea Plazzi, editor nel campo dei fumetti, noto per la sua consulenza per le opere di Leo Ortolani. Il fumetto è davvero piacevole, anche se l’argomento non è semplicissimo, visto che l’ultima lezione ruota attorno all’ipotesi del continuo di Cantor.
Il terzo libro è davvero per tutti: è Matematici di profilo, di Umberto Bottazzini. Si tratta di 48 brevi biografie, o, per meglio dire, ritratti, di matematici e matematiche attraverso i quali è possibile ricostruire la storia della matematica. I profili sono stati pubblicati su Il Sole 24 Ore con il quale Bottazzini ha collaborato a lungo, come dimostrato da questo articolo del 2020: L’affascinante storia di «pi greco». Questa affascinante storia si apre con il Don Giovanni di Mozart e il problema della quadratura del cerchio, ovvero il «problema di costruire con riga e compasso un quadrato di area uguale a quella di un cerchio dato». Passando attraverso la Bibbia e re Salomone, Bottazzini cita Il pendolo di Foucault di Umberto Eco e La montagna incantata di Thomas Mann, ma poi ricorda i grandi personaggi che hanno reso immortale questo numero (o forse è questo numero ad aver reso immortali i matematici che l’hanno studiato!). Così ci viene ricordato che il celebre simbolo è stato scelto da Eulero, mentre la dimostrazione dell’irrazionalità risale al 1768 ad opera di Johann Heinrich Lambert. Che dire poi della trascendenza? Ferdinand von Lindemann dà la soluzione definitiva al rompicapo della quadratura del cerchio nel 1882: con riga e compasso è impossibile! 

Sono aperte le iscrizioni al secondo convegno nazionale CARME: Ricerca in pratica: la ricerca in didattica della matematica per la scuola. Si terrà a Pistoia, il 17 e 18 maggio prossimi, e le iscrizioni si chiuderanno il 15 aprile. 

Buona matematica e buon cammino! Ci sentiamo tra TRE settimane!

Daniela 

Fonte dell’immagine: https://shorturl.at/ioQ39

Letto 860 volte Ultima modifica il Venerdì, 15 Marzo 2024 11:42

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy