Venerdì, 06 Settembre 2019 19:47

145 - 6 Settembre 2019

È in corso in questi giorni, presso l’Università di Pavia, il XXI Congresso dell’Unione Matematica Italiana. Aperto a tutti i matematici, è anche un’occasione per consegnare dei premi, come quello dedicato alla memoria di Stefania Cotoneschi, docente presso Scuola Città Pestalozzi di Firenze, scomparsa nel 2015. Il premio «è destinato ad un docente di ruolo di Scienze Matematiche, Chimiche, Fisiche e Naturali di scuola secondaria di primo grado, che si sia distinto per la diffusione della educazione matematica tra i giovani e più in generale nella società o nella comunità scientifica, attraverso pubblicazioni oppure opere grafiche o produzione di materiale audiovisivo o interventi su siti web» e quest’anno è stato assegnato a Sofia Sabatti (spesso citata anche in questa newsletter), docente dell’Istituto comprensivo “Cristoforo Colombo” di Chirignago, a Venezia. L’articolo che ha scritto per MaddMaths!, in occasione dell’assegnazione del premio, parte da un suo errore che l’ha «confermata nell’idea che imparare la matematica è un po’ come salire una scala a chiocciola e che il lavoro di squadra (oltre che bello) è indispensabile». Sofia ha una vera passione per la topologia, perciò non è un caso che cominci con un nastro di Möbius, che in qualche modo scatena sempre un po’ di meraviglia. Al di là delle interessanti riflessioni in merito, che lasciano stupiti anche chi, come me, conosceva già il nastro di Möbius, ciò che mi colpisce sempre di Sofia è che non perde occasione per sottolineare la bellezza e l’utilità dell'errore e così il motto “sbagliando si impara” diventa “senza sbagliare, non si impara”. «Credo che dobbiamo dare ai nostri alunni l’occasione di sbagliare, mettendoli di fronte a problemi autentici, significativi e difficili, se vogliamo che imparino davvero un po’ di matematica.» E l'immagine della scala a chiocciola è davvero ispirante, un ottimo inizio di anno scolastico: una sfida e un invito ad approfondire, sempre.

Da un’eccellenza all’altra, ecco un’intervista a Federico Benuzzi, rilasciata a Chiara Sirk, che comincia con l’ammissione di ritenere la matematica e la fisica un vero incubo. Eppure Benuzzi riesce, con i suoi spettacoli, a darci un’immagine diversa di queste due materie. A metà intervista, Chiara ammette che la matematica e la fisica possano essere affascinanti, ma resta il fatto che il fascino di queste materie contrasta con il numero insufficiente degli iscritti alle facoltà scientifiche e non manca di interrogare Federico al riguardo: «La scienza, almeno quella delle superiori o dei primi anni di università, non ha niente di incomprensibile, il problema è che in essa tutto è strettamente collegato. A un passaggio ne segue un altro, che si comprende solo avendo chiaro il precedente, in una lunga sequenza. Lo studio saltuario, sporadico, finalizzato al compito in classe con queste materie è un disastro.» Insomma, il segreto è sempre lo stesso: poco ogni giorno, come fa chi si allena per eccellere in un qualsiasi sport.

Capita spesso di sentir associare la matematica a tutti i sentimenti negativi che possono venire in mente, dall’odio all’insofferenza, eppure a me piace ricordare che la matematica è spesso associata anche alla passione. Insomma, io credo che sia molto più probabile trovare la passione tra gli insegnanti di matematica che tra gli altri, tanto che spesso gli alunni accusano i propri insegnanti di matematica di essere degli “invasati”, non riuscendo a spiegarsi questa passione. Se si pensa anche ai grandi matematici, la passione può essere così grande da guidare scelte estreme: è il caso di Sonia Kowalewskaja, che, grazie alla sua tenacia, ha potuto studiare a Berlino con Karl Weierstrass. Anne-Charlotte Leffler, drammaturga, attivista, sorella del famoso matematico e amica svedese di Sofia, la racconta in “La vita di Sonia” e il brano è riportato sulla rivista Prisma del Pristem.

Ed è la passione che ha guidato la scelta di partecipare alla XVII Edizione del Festival di BergamoScienza con un tema come quello dei poliedri. Quando la testa comincia a concentrarsi su un argomento come quello dei poliedri, sembra di vederli ovunque: ecco l’esempio di Castel del Monte, «una perla del patrimonio storico-architettonico pugliese». Non è un caso che questo edificio mi sia stato suggerito da un’alunna durante l’ultima riunione di progettazione: oltre ad essere stato l’ispirazione dell’architettura della biblioteca del convento dove si svolge la storia de Il nome della rosa, nella trasposizione cinematografica di Jean-Jacques Annaud è un ottimo esempio di poliedro, con la sua pianta ottagonale.

La forma particolare dei cristalli è un altro esempio di poliedro: a cosa è dovuta questa forma perfetta? Un affascinante video sui cristalli realizzato per Ted-Ed, che è possibile vedere anche con i sottotitoli in italiano, ci spiega che le loro forme rispecchiano la disposizione degli atomi, come dimostrato dalla galena con la sua forma cubica o dalla struttura tetraedrica del quarzo. Non può mancare l’esempio particolarmente affascinante dei diamanti, che crescono naturalmente come cubi quando le temperature sono più basse o come ottaedri a temperature maggiori (dimenticate la forma classica in cui li conosciamo, perché in natura non si presentano così).

In altre parole, la passione può assumere diverse forme, ma può diventare anche un gioco, come dimostrato dal Cubo di Rubik, il famoso rompicapo, che possiede 43000000000000000000000000000000 configurazioni possibili e che è stato inventato nel 1974 dal professore ungherese Erno Rubik. 27 cubi più piccoli, disposti in un reticolo 3x3x3, con adesivi con sei colori diversi: qualcuno di voi è riuscito a risolverlo? Attualmente il record è di 3,47 secondi per la soluzione. Che la matematica sia alla base di questo gioco è evidente per tutti e, quindi, i matematici si sono posti una domanda da matematici e cioè se ci sia un numero minimo di mosse per risolverlo: ci sono voluti 36 anni per avere una risposta, perché solo nel 2010 «un gruppo di matematici e di programmatori informatici ha dimostrato che il Cubo di Rubik può essere risolto in, al massimo, 20 mosse». La simpatica curiosità è che Erno Rubik ha impiegato più di un mese per risolvere il gioco!

Concludo con un ultimo suggerimento: un questionario della Mathesis per gli insegnanti di matematica e fisica per l’esame di maturità. «Dal momento che la didattica della matematica e della fisica sembra sempre più essere centrata sui cambiamenti normativi, la Mathesis propone questo questionario, da somministrare ai docenti di matematica e/o fisica dei Licei Scientifici interessati ad un dialogo e un confronto che potrà avvenire nelle sezioni Mathesis, come attività condivisa, e successivamente in un dibattito che avrà luogo a livello nazionale.»

 

Buona matematica! Ci sentiamo tra TRE settimane!

Daniela

Letto 1719 volte Ultima modifica il Venerdì, 06 Settembre 2019 22:15

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy