Verifica di matematica, classe seconda liceo scientifico, recupero per assenti
Argomento: calcolo delle probabilità
Durata: 60 minuti
Il calcolo delle probabilità è parte integrante del programma di matematica del liceo scientifico: dopo un primo approccio in seconda, con un cenno al Teorema di Bayes, si procede, in quarta, con un approfondimento, grazie ai nuovi strumenti offerti dal calcolo combinatorio e ad una maggiore capacità di astrazione.
Il calcolo delle probabilità è anche estremamente utile per affrontare un percorso di educazione civica e il collegamento più immediato ha a che fare con l’azzardopatia, anche se, in generale, la probabilità ci offre un modo di interpretare la realtà, entrando nelle aule di tribunale, negli ospedali e nelle decisioni che prendiamo ogni giorno.
Ho cominciato il percorso con i miei alunni di seconda sfruttando il lavoro di Taxi1729, una società di consulenza, formazione e comunicazione scientifica, il cui lavoro, come recita l’homepage, ha «un unico filo conduttore: la decisione umana». Il primo video, Gratta e vinci: compulsivi per legge, mostra fin da subito che ci sono studio e pianificazione dietro la forza del gioco d’azzardo.
«Nel 1997, in una relazione alla Camera dei deputati sull’andamento dei Gratta e Vinci, il Ministro delle Finanze Visco si dichiara soddisfatto degli ultimi incassi ottenuti per lo Stato e fa una lista dei punti di forza di questo gioco, su cui investire negli anni successivi». I punti di forza sono l’intimità, data dal sentirsi protagonista del gioco, l’illusione della vincita, perché come lascia capire la pubblicità è facile vincere, le piccole vincite, visto che un biglietto su quattro è vincente, e le quasi vincite, che generano frustrazione, ma fanno anche venir voglia di riprovarci subito. Anche i mass media sono complici di questi incassi dello Stato, perché ogni volta che c’è una grande vincita, questa viene enfatizzata, invogliando gli spettatori a diventare giocatori, a tentare la fortuna. Anche se siamo consapevoli che le probabilità di vincita sono molto basse, il fatto che qualcuno vinca ogni tanto ci porta a illuderci di poter essere, un giorno, uno dei fortunati vincitori.
Insegno a Lovere, sul Lago d’Iseo, e sono a pochi minuti di auto da Rovetta (in provincia di Bergamo) dove «è stato centrato il 6 dei record al SuperEnalotto!» il 16 febbraio del 2023. Il giorno dopo, Paolo Canova e Diego Rizzuto di Taxi1729 hanno pubblicato il video Qui vinti 371 milioni di euro! proprio per parlare della vincita. Quando ho fatto il percorso con la seconda dell’anno scorso, la vincita è stata realizzata proprio il giorno che i miei alunni affrontavano la verifica scritta sull’argomento e il giorno della consegna ho mostrato il video. Come ricorda Diego verso la fine, quel 16 febbraio ha coinciso con «il 21° Bradbury day, ovvero il ventunesimo anniversario (a proposito di improbabilità) della improbabilissima vittoria olimpica del pattinatore australiano Steven Bradbury», vincitore della prima medaglia d’oro australiana alle Olimpiadi invernali.
La vittoria è stata così inaspettata per tutti che “doing a Bradbury” in Australia è diventato un modo di dire che indica «un successo clamoroso e altamente insperato». Allo stesso livello si pone quanto successo a Randy Johnson, che ha colpito un colombo lanciando una palla durante una partita di baseball, il 24 marzo 2001. Anche questo evento è altamente improbabile, e consapevolmente Randy ha usato l’unicità di quanto successo per farne il suo logo, ora che esercita la professione di fotografo.
Nel percorso sulla probabilità è per me estremamente importante sottolineare come il nostro intuito non sempre ci aiuti ad affrontare le situazioni: spesso ci porta fuori strada, spingendoci a valutare erroneamente la probabilità di un evento. Ho continuato il percorso, quindi, parlando del paradosso di Monty Hall, che poi non è altro che un’applicazione del teorema di Bayes. Ho cominciato con un piccolo estratto del film 21, nel momento in cui il professore Mickey Rosa capisce che l’allievo del MIT Ben Campbell potrebbe essere un ottimo acquisto per la squadra che sta addestrando a vincere ai tavoli del Blackjack. Il professore offre a Ben «l’occasione di beccarsi un credito extra», parlando di quello che lui chiama «il problema del conduttore di quiz televisivo»: «Ben, diciamo che stai giocando in televisione e hai la possibilità di scegliere fra tre porte diverse, intesi? Dunque: dietro una delle porte c’è un’auto nuova, dietro le altre due: capre!» Sul sito Mathigon si può procedere con una simulazione del gioco e io lo faccio in classe, offrendo alla classe anche l’occasione di ripassare un po’ l’inglese. Una volta che è stata effettuata la scelta, il presentatore apre una delle porte non scelte e dietro la quale c’è, ovviamente, una capra. A questo punto del gioco, è più conveniente tenere la prima scelta o cambiare porta? Ben non ha dubbi e dà la risposta giusta, ma a me piace procedere leggendo la descrizione che ne fa Christopher, il protagonista del libro di Mark Haddon Lo strano caso del cane ucciso a mezzanotte, perché offre anche l’occasione di riflettere su come funzioni la matematica: «Il signor Jeavons disse che mi piaceva la matematica perché mi faceva sentire al sicuro. Disse che mi piaceva perché la matematica serve a risolvere i problemi, poi aggiunse che questi problemi erano difficili e interessanti, ma che alla fine c’era sempre una risposta chiara e diretta per tutto. Ciò che intendeva era che la matematica non è come la vita perché nella vita non esistono risposte chiare e dirette. So che era questo che voleva dire perché è quello che ha detto. Perché il signor Jeavons non capisce i numeri». Per questo motivo, il capitolo 101 del libro (ovvero il 26°) è dedicato al paradosso di Monty Hall, che viene esplorato nel dettaglio, insieme alla vicenda di Marilyn vos Savant, che aveva spiegato il problema dalle pagine della rivista americana «Parade». La sua risposta giusta le è costata un forte attacco, visto che molti scrissero alla rivista contestando la sua risposta: «Il 92% delle lettere sostenevano che si era sbagliata, e molte provenivano da matematici e scienziati». Roberto Natalini, dalle pagine del libro Teorema di Bayes, ci ricorda che «persino il famoso matematico Paul Erdős pensava inizialmente che la soluzione proposta da Selvin e vos Savant fosse sbagliata» (Steve Selvin è lo statistico che risolse il problema per la prima volta nel 1975, e il fatto che lui non sia stato attaccato pesantemente come la vos Savant mi spinge a pensare che parte dell’attacco sia imputabile a una questione di genere).
Per continuare a lavorare sui bias cognitivi legati alla probabilità, chiedo ai miei alunni di mettersi in gioco con il test proposto da Paolo Canova e Diego Rizzuto nel libro Fate il nostro gioco: ci sono 10 eventi diversi e gli alunni devono metterli in ordine, dal più probabile al meno probabile. Non è certo facile procedere senza calcoli e senza ricerche in rete, usando solo l’intuito: «Nei numerosi incontri che abbiamo fatto in giro per l’Italia, nessuno ha mai indovinato l’ordine giusto. Un po’ perché di alcune di queste cose sappiamo poco o niente, dunque facciamo fatica a stabilirne la probabilità, un po’ perché è molto difficile sottrarsi all’influenza delle speranze, delle paure, delle esperienze passate, dell’amplificazione mediatica o al nostro naturale istinto di accordarci alle opinioni altrui», dichiarano i due autori.
Parlando di nuovo del SuperEnalotto, non posso non dare ascolto ad un’altra voce autorevole nel campo dell’azzardopatia, Federico Benuzzi, docente, giocoliere, attore, autore del libro La legge del perdente e autore e protagonista dello spettacolo teatrale L’azzardo del giocoliere, di cui il video A cosa serve la matematica? Il SuperEnalotto non è che un estratto.
In modo molto coinvolgente, Federico Benuzzi descrive la vittoria al SuperEnalotto come la scelta di una carta, precedentemente firmata, in un mazzo con 600 milioni abbondanti di carte. Immaginando di mettere in fila tutte le carte, in un serpentone di 311 km, che si snoda da Bologna al casinò di Locarno, «camminate accanto al mazzo e quando finalmente siete paghi, vi fermate, vi chinate, ne pescate una e se è quella che avete scelto avete vinto 130 milioni di euro». Nonostante l’improbabilità che questo avvenga, «il fatturato del gioco d’azzardo, in Italia, è circa 90 miliardi l’anno! Quasi l’8% del PIL! […] Si stima che gli italiani spendano, in gioco d’azzardo, il 10% di quello che spendono come privati!»
In questa passeggiata tra le probabilità, mi piace fare riferimento a storie che in qualche modo possano restare impresse e che aiutino, quindi, a collocare meglio quanto dico dal punto di vista matematico. Per questo motivo, non può mancare Roy Sullivan, del quale ho sentito parlare per la prima volta quando ho visto online la conferenza di Paolo Canova e Diego Rizzuto al Salone del libro nel 2013. L’ho ritrovato, ovviamente, anche tra le pagine del loro libro, nel capitolo dedicato agli eventi improbabili, come «manifestazione empirica che l’improbabilità esiste e vive insieme a noi».
Roy Sullivan è un guardiaparco, che, nell’arco della sua vita, è stato colpito sette volte da un fulmine, a dimostrazione del fatto che anche ciò che indichiamo come «praticamente impossibile» potrebbe verificarsi. Nel corso della conferenza, la vicenda di Roy Sullivan è presentata per rispondere all’obiezione di chi potrebbe riconoscere che per quanto la vittoria al SuperEnalotto sia «praticamente impossibile», è fuor di dubbio che qualcuno, ogni tanto, vince! Diego e Paolo citano la legge dei numeri grandi, per sottolineare che anche se la probabilità di vincere, per il singolo, è molto bassa, quando ci sono molte persone che giocano, la probabilità che, all’interno della popolazione, qualcuno vinca potrebbe essere anche molto alta. In altre parole, se in un gruppo di cinque persone lanciamo un dado a sei facce e ognuno di noi scommette su una faccia diversa, la probabilità che qualcuno di noi riesca a vincere è molto alta (5/6), mentre la probabilità del singolo non è cambiata (1/6).
Torno poi alle fasi iniziali della conferenza e lascio che Diego e Paolo raccontino l’incredibile vicenda del processo di O.J. Simpson, ripresa anche da Paolo Caressa in un articolo pubblicato su Prisma, La probabilità condizionata del Reverendo. La vicenda è quella del processo che ha fermato gli USA quando, il 3 ottobre 1995, stava per essere emanato il verdetto: O.J. Simpson era accusato di aver ucciso la ex moglie, Nicole Brown Simpson, ma alla fine del processo verrà giudicato “Not guilty!”, non colpevole. L’accusa aveva dimostrato la presenza di violenze domestiche durante il loro matrimonio, sposando la tesi secondo la quale, essendo un uomo violento, era molto probabile che fosse lui il responsabile della morte della ex moglie. La difesa, gestita dal cosiddetto Dream Team, ovvero il gruppo di avvocati migliore sulla piazza, aveva quindi proceduto con il calcolo delle probabilità, studiando le cifre dell’anno precedente: su 4 milioni di donne picchiate dal partner, “solo” 1600 erano state uccise, ovvero lo 0,04%, quindi era estremamente improbabile che O.J. Simpson fosse il responsabile della morte della ex moglie. Un dream team per l’accusa, con almeno un matematico, avrebbe forse potuto ribaltare il verdetto: c’è un errore macroscopico alla base del ragionamento, perché l’insieme di riferimento, ovvero l’insieme dei casi possibili, non può essere quello delle donne picchiate dal partner. Alla luce di quanto successo, l’insieme di riferimento deve essere quello delle donne che hanno subito violenza domestica E che sono state uccise. A questo punto, con questo nuovo insieme al denominatore costituito da 1800 donne, la probabilità diventa 1600/1800, ovvero dell’89%. Il Reverendo Bayes avrebbe potuto aiutare gli avvocati a fare realmente giustizia.
In classe, è stato necessario anche dedicare un po’ di tempo al calcolo, esplorando la teoria della probabilità attraverso alcuni esercizi, per capire ancora meglio i problemi che ci eravamo posti. Ho usato il libro del prof. Daddi Calcolo delle probabilità come supporto, ma ho avuto modo di utilizzare anche gli esempi proposti da Roberto Natalini nel suo libro Teorema di Bayes, pubblicato nella Collana di Le Scienze. Ci siamo divertiti con Il problema dei gattini, dove «una gatta ha partorito due gattini di cui almeno uno è maschio. Qual è la probabilità che anche l’altro sia maschio»?, che è indicato come un paradosso. Poi non ho potuto non parlare del problema dei test diagnostici e, seguendo le orme di Roberto Natalini, ne ho presentata una soluzione elementare, sottolineando come «la probabilità per una persona malata di essere positiva è diversa dalla probabilità per una persona positiva di essere malata».
In conclusione, sono tornata sul gioco d’azzardo con il video di Taxi1729 Il caso si fa bello.
Questa volta in scena ci sono Diego Rizzuto e Olmo Morandi: tutto comincia al casinò di Montecarlo, il 18 agosto del 1913, quando le persone che si trovarono davanti al tavolo della roulette videro uscire 19 neri consecutivi. Su cosa avreste puntato per il ventesimo lancio? Avreste fatto come i presenti e vi sareste giocati anche le scarpe? «La forza di un’anomalia come questa è capace di indurre in tentazione chiunque, persino i più scettici», dichiarano Paolo e Diego nel libro, e nel video sentiamo una fastidiosa vocina che continua a ripetere «Il rosso è più probabile!» Ma il rosso si negò ancora e i neri consecutivi arrivarono a 26. Il motivo per cui avremmo puntato sul rosso è legato all’idea errata di caso che abbiamo in testa: secondo gli psicologi Daniel Kahneman e Amos Tversky «tutti noi abbiamo in testa delle regole estetiche che il caso deve rispettare per potersi dire tale!». L’equità, l’alternanza e il disordine appartengono a quei bias cognitivi di cui siamo tutti vittime, in qualche modo, come dimostrato da Steve Jobs, che, con l’opzione shuffle dell’iPod «decise di correre ai ripari e di creare una riproduzione casuale non “veramente casuale”, ma che apparisse tale ai clienti».
Queste regole estetiche sono così radicate che trovano terreno fertile anche nel gioco del Lotto, con i numeri ritardatari, che sono riportati anche nel sito ufficiale del gioco del Lotto (quelli seguenti sono comparsi il 16 febbraio 2024):
Tendiamo a vedere una dipendenza tra i singoli eventi, ma non tutti gli eventi sono collegati tra loro, e sicuramente non sono collegate tra loro le estrazioni del Lotto. Il Lotto non ha memoria, come la moneta, come i dadi, come la roulette!
Dopo aver cercato di scardinare i bias cognitivi legati alla probabilità a suon di matematica, ho concluso il percorso riprendendo in mano l’articolo (già citato) di Paolo Caressa per parlare di un’altra vicenda giudiziaria complicata dal calcolo (errato) della probabilità, quella «dell’inglese Sally Clark, condannata nel 1999 per aver soffocato entrambi i figli: il giudice aveva stimato troppo improbabile che tutti e due fossero morti in culla, dato che la probabilità che un bimbo muoia di questa orribile sindrome era stimata 1 su 8543». Se noi consideriamo indipendenti tra loro le due morti, come ha fatto il pediatra interpellato, la probabilità, già bassa, di un singolo evento, diventa ancora più bassa quando si considerano i due eventi insieme, «poco più di un milionesimo per cento!» Bisogna aspettare il 2001 per avere l’intervento della Royal Statistical Society, che screditò l’ipotesi del pediatra: «la probabilità della morte in culla di un bambino è ben più alta se un suo fratello ha pure subito questa terribile sorte». Sally Clark venne scagionata nel 2003, ma la sua vita era ormai stata rovinata. Non ha avuto la fortuna di avere dalla sua parte il Dream Team di O.J. Simpson…
Fatto in questo modo, il percorso ha permesso di guardare in faccia i nostri bias cognitivi, dare alla teoria delle probabilità una parvenza umana attraverso il racconto di numerosi aneddoti, impedire che venisse percepito come mero calcolo, mostrare, ancora una volta, che la matematica è ovunque e che per l’educazione civica è una vera fonte di ispirazione!
«Calcolo delle probabilità» è stato pubblicato da EBS print nel 2022 e l’autore è Francesco Daddi: docente di matematica e fisica presso il Liceo Scientifico “Fermi” di Cecina dal 2005, ha al suo attivo numerose pubblicazioni su riviste di didattica della matematica, è spesso relatore a convegni e si occupa di corsi di formazione per insegnanti. È attivo anche nel campo della divulgazione, come dimostrato dal suo sito www.francescodaddi.it.
Il testo contiene 1800 esercizi svolti e 200 esercizi proposti inerenti alla teoria della probabilità, «uno dei settori della matematica più ostici da insegnare e da apprendere». Questa frase di apertura della prefazione ci informa che il testo è stato pensato sia per gli studenti che per i docenti: Daddi utilizza dei risultati teorici, punta sulla comprensione dei concetti e propone più strategie risolutive per consentire al lettore di scegliere quella più adeguata mentre, con pazienza, lo accompagna verso la formalizzazione matematica dei problemi.
Suddivisi in dieci capitoli, i 2000 esercizi permettono al lettore di affrontare ogni genere di quesito riguardante la probabilità, a partire dalle basi: il primo capitolo è dedicato al calcolo combinatorio, mentre il secondo offre un’ottantina di esercizi preparatori, particolarmente adatti per il primo approccio alla probabilità alle superiori, che in genere avviene al biennio. Gli esercizi presentano strategie risolutive che utilizzano la teoria degli insiemi o i teoremi della probabilità, proponendo un’ampia casistica e un livello di difficoltà difficilmente presente nei libri di testo attuali, mettendo a disposizione dei docenti una sfida per i propri studenti. Il terzo capitolo è dedicato alle estrazioni e alle lotterie, mentre il quarto parla di poker, tombola e tornei; il quinto capitolo analizza le prove ripetute e il sesto la probabilità condizionata, aumentando il livello di difficoltà. Il settimo capitolo propone sfide, giochi e scommesse, mentre nell’ottavo capitolo si trovano le variabili aleatorie discrete, la covarianza e la correlazione, fino ad arrivare alla distribuzione di Poisson; il nono capitolo propone una settantina di problemi sulle catene di Markov e l’ultimo capitolo ha per protagoniste le variabili aleatorie continue.
L’indice analitico permette di arrivare velocemente a ciò che interessa: il lettore vi può trovare l’elenco delle distribuzioni continue e discrete, ma anche parecchi esercizi proposti durante gli Esami di Stato del liceo scientifico, o problemi tratti dalle Olimpiadi della matematica. Non mancano problemi classici, come quello di Monty Hall: è possibile partire proprio da questi, perché la loro strategia risolutiva, analizzata dettagliatamente, diventa oggetto degli esercizi successivi.
I docenti potranno permettersi di affrontare con più leggerezza un argomento che non è tra i più amati, nemmeno dagli insegnanti di matematica, mentre gli studenti universitari potranno trovare la strategia risolutiva che è più adatta a loro. Nei primi capitoli, i prerequisiti richiesti riguardano la teoria degli insiemi e il calcolo algebrico, poi si aggiunge il calcolo combinatorio con situazioni più complesse, e nei capitoli finali è necessario possedere l’analisi matematica.
La molteplicità delle strategie, la facilità di consultazione, le rappresentazioni grafiche curate, il fatto che gli esercizi vengano ripresi più volte, prima scegliendone una trattazione semplice e poi proponendo tecniche più avanzate, i collegamenti tra i vari argomenti, rendono questo libro una vera ricchezza.
Nel numero di ottobre 2022, Le Scienze, in collaborazione con MaddMaths!, ha inaugurato l’uscita di 20 volumi dedicati ai maggiori teoremi matematici. La collana si intitola Rivoluzioni matematiche e «Teorema di Bayes» è la sedicesima uscita di questa collana. L’autore è Roberto Natalini, matematico, Direttore dell’Istituto per le applicazioni del calcolo Mauro Picone del CNR, esperto di modelli matematici, è dedito a un’intensa attività di divulgazione, come dimostrato da MaddMaths!, dalla presidenza della commissione per la diffusione della matematica della European Mathematical Society dal 2015 al 2022, dalla direzione della rivista Archimede dal 2016 e dal coordinamento del progetto Comics&Science insieme ad Andrea Plazzi a partire dal 2012.
Il volume si presenta, come tutti quelli della collana, con una copertina in cui campeggia una T ed è abbastanza anonima sia dal punto di vista grafico, sia per il fatto che non compare il nome dell’autore, emblema della centralità data al teorema. La struttura dei volumi è uniforme: dopo la biografia dell’autore del teorema, viene dedicato un po’ di spazio alla cornice culturale e scientifica, ovvero il presente del teorema; ci si addentra poi nel suo passato con gli antefatti che hanno creato condizioni favorevoli e, dopo che la parte centrale è stata dedicata all’enunciato, all’eventuale dimostrazione e ai prerequisiti necessari per comprenderlo adeguatamente, la parte finale è dedicata al futuro del teorema, ovvero alle applicazioni e agli sviluppi successivi.
La biografia di Bayes non è certo ricca di particolari, visto che non c’è sicurezza nemmeno per quanto riguarda il suo anno di nascita, anche se sappiamo che è vissuto dall’inizio del 1700 fino al 1761, è stato un ministro protestante e ha dedicato la sua vita non solo alla matematica, ma anche a scritti di carattere teologico. Il contesto generale, fatto di storia, letteratura, arte e musica, è seguito dal contesto scientifico: siamo in pieno secolo dei lumi, «un periodo in cui la ricerca nei diversi ambiti della scienza non solo accelerò, ma venne anche condotta in maniera nuova». Le nuove leggi scientifiche, dalla classificazione di Linneo al celebre testo di Darwin, offrono un terreno particolarmente fertile per la teoria della probabilità, «uno dei principali strumenti matematici di cui si è dotata la scienza moderna». Nonostante questo, «ancora oggi non è detto che, al di fuori di un ristretto numero di insegnamenti universitari, le persone abbiano una formazione di base sui concetti probabilistici, anche quando questi toccano aspetti non secondari della vita quotidiana»: obiettivo di questo testo è proprio quello di colmare questo vuoto culturale, a partire da sei problemi proposti prima dell’enunciato, che mostrano la potenza del teorema e, al tempo stesso, presentano da subito la ricchezza delle sue applicazioni. Natalini risolve fin da subito il problema dei test diagnostici, attraverso una soluzione elementare che sfrutta i diagrammi di Eulero-Venn, mostrandoci come la teoria della probabilità sia «solo un modo di quantificare la nostra incertezza per guidarci nelle decisioni da prendere».
Dopo una trattazione matematica dettagliata, rigorosa ed estremamente chiara, Roberto Natalini conclude il suo percorso con le applicazioni, a partire dalla soluzione degli esempi proposti precedentemente. Non può poi mancare il riferimento al problema di Monty Hall, la cui soluzione ha visto un errore persino del grande matematico Paul Erdős. L’applicazione del teorema di Bayes a questo problema, per quanto non sia la strada più immediata, «mostra in modo molto chiaro come le informazioni che abbiamo cambiano la nostra stima della probabilità degli eventi». È in questa ottica che il teorema costituisce un valido aiuto nel filtrare le mail in ingresso e nell’individuare lo spam, attraverso i «classificatori bayesiani ingenui», oppure può fare la differenza in tribunale, come dimostrato dal caso delle morti improvvise in culla dei figli di Sally Clark.
L’entità del calcolo richiesto per l’applicazione del teorema di Bayes l’ha reso meno comodo rispetto al teorema centrale del limite, ma i moderni strumenti tecnologici hanno reso questo ostacolo meno limitante. Non solo, le applicazioni fatte nel secolo scorso hanno mostrato tutta la sua importanza: a Bletchley Park il teorema di Bayes è stato fondamentale per ridurre il numero delle posizioni di Enigma, ma la scelta di Alan Turing è rimasta sepolta negli archivi militari fino al 1973. Nel frattempo, il teorema ha mostrato la sua versatilità nell’individuare la correlazione tra il fumo e l’insorgenza di tumori ai polmoni.
Il testo mette in evidenza la controintuitività della teoria della probabilità, tanto che «la difficoltà per molte persone nel saper rispondere al problema del test diagnostico è stata rilevata da molti studi specifici ed è alla base di problemi nelle diagnosi da infezioni batteriche e virali e nelle diagnosi tumorali». L’incapacità di effettuare stime corrette non riguarda solo l’ambito medico, ma d’altra parte «il ragionamento probabilistico bayesiano è difficile e molto poco naturale e non sorprende quindi che molte persone abbiano una erronea percezione delle grandezze in gioco». Fortunatamente, da circa sessant’anni l’approccio bayesiano si è diffuso ovunque, come dimostrato dalle applicazioni in genetica.
Natalini, lungo il percorso, riconosce la semplicità del teorema dal punto di vista matematico, e non può che evidenziare, a fronte della sua controintuitività, quanto sia «fondamentale per capire il mondo che ci circonda». Il testo si chiude con un’apertura al futuro, a dimostrazione di quanto la matematica sia vitale e in continuo movimento: «Saranno solo i prossimi anni a dirci quali nuovi problemi potranno essere risolti grazie all’intuizione iniziale di un ministro presbiteriano inglese del XVIII secolo.»
«Fate il nostro gioco» è stato pubblicato a marzo 2016 dalla ADD Editore e nello stesso anno ha vinto il Premio Vincenzo Dona, istituito dall’Unione Nazionale Consumatori. Gli autori, Paolo Canova, matematico, e Diego Rizzuto, fisico, hanno fondato nel 2012, insieme a Sara Zaccone, una società di consulenza, formazione e comunicazione scientifica, Taxi 1729, che ha come motto: «Pensiamo da scienziat*, comunichiamo da creativ*, ci divertiamo da matt*». Nell’introduzione, Diego e Paolo raccontano che, prima di essere pubblicato, il libro è stato una conferenza-spettacolo, una mostra, un laboratorio e un corso di formazione, scaturito da «una piccola e semplice intuizione», durante la partecipazione, nel 2009, al Festival della Scienza di Genova. Il testo è stato scritto in collaborazione con Gabriele Gambassini, copywriter, che ha fatto una sintesi delle loro «interminabili lezioni alla lavagna».
«Fate il nostro gioco» offre una trattazione completa di tutte le tipologie di giochi d’azzardo: dal SuperEnalotto al Lotto, fino alle lotterie istantanee e ai Gratta e Vinci, ma non mancano nemmeno i giochi da casinò come il Blackjack, la roulette e le slot machine, ormai presenti anche nei bar di periferia. Fin da subito viene introdotto un nuovo vocabolario per combattere la comunicazione ambigua e ingannevole del gioco d’azzardo: laddove si parla di vincita, Diego e Paolo parlano di bilancio (che spesso si rivela nullo o negativo), ovvero della differenza tra incasso e spesa. Il grafico cartesiano, con il bilancio in ordinata e la spesa in ascissa, contribuisce a convincerci che «se perdere è matematico, vincere giocando è impossibile. O almeno lo è sulla lunga distanza». Eppure, un modo per vincere, a volte, c’è: «In sostanza l'unico modo per vincere sembra essere quello di non seguire la dinamica del gioco, ma individuare uno spiraglio nel sistema e buttarcisi dentro in modo ingegnoso», come nel caso di Cash Winfall, dove, per renderlo più appetibile, lo si rendeva anche conveniente per il giocatore, o come per il Tic Tac Toe, dove per sfruttare al massimo le quasi vincite si era arrivati a renderlo prevedibile. Come viene ribadito a più riprese nel testo, «Chi ha mente, ingegno e perseveranza per trovare il modo di battere il banco, alla fine esce dai casinò e usa il proprio talento per qualcosa di molto, molto più redditizio», come successo al matematico Edward Thorp, autore di Beat the Dealer, il testo che svela la matematica del Blackjack.
In Italia, il gioco con la storia più lunga è il Lotto: ha per protagonisti i numeri e la fortuna, perciò non ci sono strategie, nonostante la “smorfia” napoletana e il mito dei numeri ritardatari siano presentati anche sul sito ufficiale. D’altra parte, lo Stato è promotore dei giochi, come dimostrato dalla relazione del Ministro delle Finanze Vincenzo Visco del 1997: in essa, troviamo le strategie che rendono i giochi pericolosi, spingendo i giocatori alla dipendenza, quelle strategie che, per Diego e Paolo, dovrebbero essere limitate per legge. Questi meccanismi sono sfruttati anche con le slot machine, così diffuse in Italia da essere «quasi il triplo di quelle di tutto il Nevada, Las Vegas compresa»: viene promessa la restituzione dell’85% del giocato, ma di fatto, nel lungo periodo, il giocatore è destinato a perdere la totalità di ciò che ha giocato.
Negli anni sono stati avviati numerosi studi scientifici per sondare i meccanismi psicologici che hanno portato il gioco d’azzardo al successo, e la conclusione del percorso, con la “matematica della decisione”, è un ulteriore passo per spiegarceli. Gli autori propongono al lettore tre piccoli test che mettono in evidenza proprio il ragionamento del giocatore, lo stesso che spesso guida le nostre scelte di vita. Diego e Paolo, dopo averci descritto il gioco d’azzardo, spiegato il calcolo della probabilità, dimostrato che «perdere è matematico», si inoltrano nell’ambito dei bias cognitivi, in un crescendo di complessità.
Scorrendo le pagine, ci imbattiamo, da un lato, in numerosi aneddoti che ci fanno ridere, stupire e meravigliare, perché «la scienza è una cosa seria, e proprio per questo merita di essere raccontata con spirito leggero»; dall’altro, troviamo spiegazioni che, con l’aiuto di grafici e disegni, sono estremamente chiare. Le note sono state raccolte tutte alla fine del percorso e propongono ulteriori approfondimenti attraverso indicazioni bibliografiche, curiosità e spiegazioni più dettagliate. La curiosità resta la chiave del percorso e viene stimolata a partire dalle convinzioni e dai luoghi comuni di cui tutti siamo vittime. Fin da subito, Diego e Paolo dichiarano di non aver voluto introdurre nella descrizione dei giochi molti dettagli, utili solo al fine di un gioco attivo: il libro è stato pensato per far conoscere la matematica che «potrebbe dare il suo contributo per prevenire la patologia da gioco d’azzardo».
«Fate il nostro gioco» è una lettura necessaria per tutti, per rendersi conto di come la matematica abbia un ruolo fondamentale nelle nostre scelte e, al tempo steso, per contribuire a scardinare il sistema del gioco d’azzardo.
«La matematica dell’incertezza» è stato pubblicato nel 2016 dalla casa editrice Il Mulino nella collana Intersezioni. L’autore è Marco Li Calzi, docente presso l’Università Ca’ Foscari di Venezia e direttore del Collegio Internazionale, appassionato di teoria delle decisioni e teoria dei giochi.
Abitualmente, associamo la matematica alla certezza, tanto che di un’affermazione di cui non si può dubitare diciamo che “è matematicamente certa”, perciò, già dal titolo, è chiaro che non si potrà che parlare di probabilità, e “Probabilità” è la parola con cui si apre il preludio. «Spero di convincerti che la vita quotidiana ti espone a più rischi e a più incertezza di quanto credi», scrive Li Calzi, dichiarando fin da subito il proprio obiettivo. Se analizziamo la nostra quotidianità, possiamo constatare che le decisioni vengono prese in condizioni di incertezza, valutando i rischi o le probabilità, in molti ambiti della nostra vita, dalla medicina alle assicurazioni. Che ci piaccia o no, siamo immersi nella matematica ed essa «sa trovare (e mettere) un po’ di ordine quando il caso sembra divertirsi a scombinare tutto».
Siccome l’incertezza ha molte facce, Marco Li Calzi ha dedicato un capitolo ad ogni faccia del classico dado cubico, raccontando sei storie che possono essere lette in ordine o, appunto, lanciando un dado e lasciandosi guidare dal caso nella scelta. Alea, opinione, ipotesi, decisione, premio e rischio sono le parole-chiave dei sei capitoli. Si comincia con «Correre l’alea», che racconta i primi passi del calcolo delle probabilità, a partire dal famoso “Alea iacta est” di Cesare, fino alla celebre partita incompiuta discussa da Pascal e Fermat. Nel capitolo «Formulare un’opinione» si contrappongono la conoscenza – che è certa, perché possiamo distinguere una proposizione vera da una falsa – e la probabilità, per la quale dobbiamo formarci un’opinione, soppesando i pro e i contro. «Si può colorare la conoscenza certa in bianco e nero, ma per la conoscenza probabile servono molte sfumature di grigio», come ci ricordano pubblici ministeri, scienziati e medici. Nel terzo capitolo, «Azzardare un’ipotesi», Li Calzi descrive il «congegno aleatorio del tipo che i probabilisti amano chiamare urna», abituando il lettore al linguaggio probabilistico a suon di esempi realistici e reali, e di metafore significative e semplici da cogliere, fino a spiegare il paradosso di Simpson e il significato della distribuzione gaussiana. In un crescendo di difficoltà, il quarto capitolo spiega come «prendere una decisione»: partendo dalla scelta se portare con noi l’ombrello, l’autore arriva a distinguere tra decisioni meditate e calcolate, che richiedono tempo, e decisioni istintive e spesso inconsapevoli, che hanno il pregio dell’immediatezza, paragonandole alle scelte del dottor Jekyll e del signor Hyde e obbligando il lettore a prendere delle decisioni per mettersi alla prova. Il capitolo «Valutare un premio» permette di immergersi nel linguaggio delle assicurazioni, i contratti aleatori più comuni (e più noti), ma la conclusione, insospettabile, ci porta ad esplorare il moto browniano, dopo aver seguito lo sviluppo delle scienze attuariali. Dalla nascita delle assicurazioni, con la necessità di tutelare in qualche modo i commerci marittimi, nel sesto capitolo si arriva ad «affrontare il rischio», attraverso la matematica che contribuisce «a definire la natura e a calcolare la dimensione di alcuni rischi», a partire dal lavoro di de Moivre nel Settecento.
Le postille finali sono sei importanti citazioni che richiamano le sei parole chiave che hanno guidato la narrazione e, a dimostrazione del fatto che l’incertezza investe davvero ogni settore della nostra vita, gli autori sono un biologo, un giornalista, uno scrittore, un filosofo, un astronauta e un consulente aziendale. La chiusura è originale: le citazioni avrebbero potuto essere messe in apertura di capitolo, come un’introduzione dell’argomento, mentre poste alla fine e tutte insieme acquisiscono un significato diverso, come un riassunto e un’ulteriore evidenza dell’onnipresenza dell’incertezza.
La narrazione è arricchita da numerose citazioni letterarie (Trilussa, Shakespeare, Kierkegaard, Borges, Omero, Montale…), tabelle, schemi, disegni e grafici regalano grande chiarezza, gli aneddoti alleggeriscono il percorso divertendo, e i numerosi esempi offrono ai docenti interessati un ricco campionario al quale attingere durante le lezioni sull’argomento.
La lettura è consigliata a tutti, anche solo per diventare maggiormente consapevoli dell’incertezza che permea le nostre vite e, magari, per acquisire qualche strumento in più per gestirla.
Verifica di matematica, classe seconda liceo scientifico.
Argomento: calcolo delle probabilità (recupero insufficienze)
Durata: 75 minuti.
Verifica di matematica, classe seconda liceo scientifico.
Argomento: calcolo delle probabilità
Durata: 60 minuti.
Verifica di matematica, classe seconda liceo scientifico.
Argomento: recupero del debito formativo. Radicali, equazioni e disequazioni di secondo grado, sistemi di grado superiore al secondo, calcolo delle probabilità, geometria euclidea.
Durata: 120 minuti.
Verifica di matematica, classe quarta liceo scientifico.
Argomento: recupero del debito formativo. Equazioni e disequazioni goniometriche, trigonometria, geometria analitica dello spazio, calcolo combinatorio, calcolo delle probabilità.
Durata: 120 minuti.