Sabato, 03 Agosto 2024 08:02

Le geometrie oltre Euclide

«Le geometrie oltre Euclide» è stato pubblicato da Scienza Express a maggio 2024. L’autore, Alberto Saracco, è docente di geometria presso l’Università di Parma ed è un noto divulgatore: su YouTube è presente con il celebre canale che porta il suo nome, mentre su Instagram è noto come Un matematico prestato alla Disney, infine collabora con il sito MaddMaths!
Il sottotitolo «Misurare la Terra, descrivere l’Universo» delinea il percorso che ci viene proposto: a partire dalla geometria degli antichi egizi, attraverso una crescente astrazione, la storia di questa disciplina ci porta al fine della geometria e ai tempi moderni, con la descrizione dell’Universo. Nella premessa Alberto Saracco dichiara che racconterà «in maniera leggera e divulgativa la storia della geometria»: lo stile è sicuramente leggero e divulgativo, ma accanto a temi di facile lettura, ci sono argomenti più complessi e tecnici, perché, essendo un insegnante, l’autore non può rinunciare a sfidare il lettore, dato che gli piace «stimolare un lavoro maggiore da parte di chi vuole – e può – impegnarsi». Alberto Saracco non è uno storico ma un divulgatore e un geometra differenziale e complesso, perciò la prospettiva con la quale ci mostra la geometria è particolare. L’obiettivo principale resta quello di «accendere o alimentare la passione per la matematica in chi legge». Il percorso proposto è stato prima un laboratorio presso il Liceo Marconi di Parma, realizzato più di un decennio fa, poi un seminario al Festival della Scienza di Genova nel 2018, e, grazie all’incoraggiamento di Daniele Gouthier nel 2022, è diventato un libro.

La storia della geometria comincia con i tenditori di corde dell’Antico Egitto, che avevano come obiettivo quello di misurare la terra, da qui il termine geometria; i Babilonesi in qualche modo arricchiscono questa branca del sapere con delle conoscenze teoriche mentre i greci ci presentano una geometria sintetica, che permette una comprensione profonda. Attraverso vari indizi possiamo ricostruire le caratteristiche della geometria greca: il ragionamento è fondamentale, come ci ricorda il monito di Platone all’ingresso della sua scuola, la fatica è necessaria, non esistono strade alternative per evitarla, e il sapere che viene costruito non ha come obiettivo l’utilità. Con il passare del tempo, la geometria acquisisce sempre maggiore astrazione, e con la scuola pitagorica si arricchisce della dimostrazione, mentre Euclide non fa altro che sistematizzare il sapere guadagnato fino a quel momento. Con la geometria analitica si passa a una geometria più tecnica, grazie ad un’algebra che si è evoluta, da descrittiva in simbolica, grazie ai contributi di Al Khwārizmī.
Esaurita la prima parte del percorso, probabilmente nota a molti, almeno per sommi capi, si arriva al centro della narrazione: dopo il tentativo di Saccheri di liberare Euclide da ogni macchia nel 1733, dimostrando per assurdo il quinto postulato, nel 1830 nascono le geometrie non euclidee con Lobačevskij e Bolyai, che non temono gli «strilli dei beoti» come Gauss, ma non godono certo, durante la loro vita, di un grande riconoscimento. Queste risposte fuori dagli schemi portano a un fiorire di interesse attorno alla geometria e alla nascita di nuove geometrie, che, contrariamente agli obiettivi di inutilità dei greci, si rivelano estremamente utili per descrivere l’Universo. A questo fa seguito il programma di Erlangen di Klein, che nel 1872 definisce la geometria come «studio delle proprietà invarianti sotto l’azione di un certo gruppo di trasformazioni», mentre Hilbert procede con l’assiomatizzazione della geometria euclidea, esplicitando anche quegli assiomi che Euclide riteneva sottintesi. Insomma, da una geometria rigida come quella euclidea, l’astrazione ha portato a geometrie più flessibili che, avendo meno strumenti a disposizione, sono adatte per più figure: con questa varietà di geometrie «possiamo capire meglio il mondo matematico, sfruttando di volta in volta la geometria più adatta.» Le nuove geometrie permettono di fare passi avanti in diversi campi: la geometria differenziale permette di descrivere l’Universo, come ha fatto Einstein attraverso la relatività generale, la geometria proiettiva permette di capire come funziona la vista, e la topologia con i grafi descrive le connessioni neurologiche, ma non solo. In altre parole, questa geometria si rivela uno strumento indispensabile per indagare e comprendere la vita, l’Universo e tutto quanto.

Il libro è stato pensato per gli studenti delle superiori: è alla loro portata anche se, per accedere alla bellezza della matematica, è sempre necessario compiere un po’ di fatica. I box offrono un’occasione di approfondimento e un’ulteriore sfida di apprendimento, proponendo il metodo iterativo di Archita per il calcolo delle radici quadrate, i paradossi di Zenone, le sfere di Dandelin, le equazioni di secondo grado risolte con il metodo di Cartesio e le varietà. Insieme agli enunciati di alcuni teoremi e di assiomi, troviamo anche alcune dimostrazioni, perché «parlare di matematica senza mai toccare con mano una dimostrazione è ingannare il lettore»: non c’è bisogno di spaventarsi, però, perché seguendo il percorso un passo per volta, si riesce a comprendere tutto. La narrazione è arricchita dalle illustrazioni di Nicole Vascotto, che permettono di capire ancora meglio il tema, anche se non manca il monito di Poincaré: «La geometria è l’arte di ragionare bene su disegni fatti male». Il libro è ricco di matematici, alcuni più famosi di altri, ma l’autore ricorda che «difficilmente una scoperta scientifica o matematica può essere considerata la scoperta di un singolo individuo», a partire dagli Elementi fino alle scoperte più recenti.

Il lavoro di Alberto Saracco è particolarmente ricco: non è solo un percorso storico, ma un viaggio ragionato e di ragionamento nella terra delle geometrie, che ci permette di notare come il ruolo della geometria sia cambiato nel corso dei secoli e come l’apertura di nuove strade abbia aperto nuovi campi di applicazione, fornendo risposte sempre più interessanti e ampie. Un libro pensato per gli studenti delle superiori che in qualche modo sopperisce alle carenze di percorsi di studio per i quali sembra esistere solo la geometria analitica, visto che persino quella euclidea è ritenuta spesso troppo impegnativa per essere insegnata al biennio. Un libro per aprire gli orizzonti di ognuno e per permettere a tutti di cogliere fino in fondo la bellezza della geometria.

Informazioni aggiuntive

  • Autori: Alberto Saracco
  • Codice ISBN: 9791280068811
Letto 833 volte Ultima modifica il Lunedì, 12 Agosto 2024 10:01
Altro in questa categoria: « La formula segreta Io sono Marie Curie »

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy