Lunedì, 11 Settembre 2023 15:09

Tubi, rose e... impacchettamento

A mia mamma piacciono tantissimo le rose di pesche: un po’ di pasta sfoglia (si compra in rotolo, già pronta!), qualche pesca, un paio di cucchiai di marmellata di albicocche e via in forno!
Per il suo compleanno, non potevano mancare…

 

Ne avevo fatte in quantità e ne sono avanzate 7. Le ho disposte su un piatto, nel modo più “economico” (in termini di spazio) possibile. È la pratica a indicare la strada, ma anche la matematica ci dà una mano:

«Chiunque deve disporre lattine di fagioli in un ampio spazio, può contare su un teorema matematico, noto come Teorema di Thue, secondo il quale la disposizione esagonale permette di raggiungere la massima densità possibile. Pertanto, ancora una volta, come spesso accade con i quesiti matematici, la soluzione migliore risulta essere fondata su una delle strutture più semplici e meglio conosciute.» (R. Eastaway, J. Wyndham, Matematica dietro le quinte, edizioni Dedalo).

Le mie non erano lattine, ma piccoli muffin di pesche, dalla forma tondeggiante, come quelle delle lattine!

Mio papà vede le rose sul piatto. Dice che gli ricordano la Tenaris… strano! Mio papà ha passato quasi tutta la sua carriera lavorativa alla Tenaris e qualsiasi cosa gliela ricorda. Ma questa volta ha ragione: la Tenaris produce tubi e, quando vengono stoccati, sono disposti in modo da occupare il minor spazio possibile, quindi seguendo una struttura esagonale (come quella delle lattine di fagioli!).

«Se il fascio di tubi era più grande, mi pare diventassero 19.»

Il successivo numero esagonale è 19, ma sono numeri esagonali particolari, detti centrati. Così la disposizione dà la sequenza: 1, 7, 19, 37, 61, …

La si può costruire in questo modo: il primo numero è 1, poi si aggiunge 6, ovvero 6x1. L’esagono successivo ha i lati con 3 punti ciascuno, i vertici più il punto medio, perciò possiamo dire che l’esagono successivo avrà perimetro 12, in altre parole 6x2. Quello dopo ancora avrà 18 punti, cioè 6x3… e via così. Quindi, all’ennesimo esagono, avremo: 1+6(1+2+…+n-1), se consideriamo come primo esagono quello degenere e ridotto a un punto solo.

Erroneamente, avevo pensato ai numeri esagonali, ma i veri numeri esagonali sono quelli rappresentati nella figura a destra e la sequenza è diversa: 1, 6, 15, 28, 45, 66, …. Come si può notare, crescono più lentamente e danno luogo a un disegno diverso. Non solo: hanno una formula diversa! Io me la sono costruita e se vogliamo arrivare a 66, otteniamo:

1+(6x1-1)+(6x2-3)+(6x3-5)+(6x4-7)+(6x5-9)=1+6(1+2+3+4+5)-(1+3+5+7+9)=66

Letto 770 volte Ultima modifica il Sabato, 10 Agosto 2024 15:22

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy