Visualizza articoli per tag: teatro

Giovedì, 19 Giugno 2014 21:02

Copenaghen

TRAMA:

Nel settembre del 1941, Heisenberg si reca in Danimarca, a Copenaghen, per incontrare il suo mentore, Niels Bohr. Su ciò che Heisenberg sperava di ricavare dall’incontro, su ciò che si sono detti e su come sia avvenuto l’incontro, sono state avanzate congetture di tutti i tipi. Solo nel 1947, Heisenberg ebbe la possibilità di tornare a trovare l’amico, forse per trovare una versione comune del loro primo incontro. Ma questo secondo incontro non fece che sancire ciò che di fatto era già chiaro: i due famosi fisici avevano perso la loro amicizia. Il testo teatrale di Michael Frayn parte dall’incontro del 1941, ma, allontanandosi dai dati storici, suppone che tutte le persone siano ormai morte e che discutano ulteriormente la questione, forse per arrivare a una comprensione migliore di ciò che è successo.

Frayn ha compiuto una vera e propria analisi storica, come dimostrano i due post scriptum al termine del testo: Heisenberg era un nazista e voleva in qualche modo coinvolgere nelle sue attività Bohr, magari estorcendogli informazioni importanti, soprattutto riguardanti il livello raggiunto dalla ricerca oltreoceano? Oppure voleva prendere le distanze dai nazisti, evitando però di farsi riconoscere come un traditore?

L’incontro viene rivissuto, per ben tre volte, alla ricerca di una verità, che non può che restare indeterminata, perché “tutti noi con il passare del tempo riorganizziamo i nostri ricordi, consciamente o inconsciamente”. Persino la pubblicazione delle trascrizioni di Farm Hall, dove Heisenberg era stato rinchiuso con gli altri scienziati tedeschi, non ha contribuito a rendere più chiaro il ruolo dello scienziato nella costruzione delle armi atomiche e i vari storici interpretano in modo diverso le sue parole.

Nel corso della prima ricostruzione, Heisenberg e Bohr escono per proseguire la loro chiacchierata in tranquillità e rientrano dopo solo dieci minuti: Bohr è arrabbiato e Heisenberg se ne va in tutta fretta. Bohr continua a parlare con la moglie Margrethe, per cercare di capire cosa sia realmente successo. Pare che Heisenberg abbia chiesto se come fisico aveva il diritto morale di lavorare allo sfruttamento pratico dell’energia atomica. Bohr ne dedusse immediatamente che Heisenberg ci stava lavorando e che stava cercando di fornire a Hitler armi nucleari.

Ripartono per una nuova simulazione, con più calma: per Margrethe, Heisenberg cercava l’assoluzione di Bohr, ma alla fine colui che ha partecipato al programma per la costruzione della bomba è stato Bohr, in America ed è Heisenberg allora che punta il dito, chiedendosi se ci sia mai stato uno, all’interno del programma, che si sia soffermato almeno un attimo a riflettere su quello che stavano facendo.

L’inizio del secondo atto si apre con la terza e ultima rievocazione. Insieme tentano di capire, ma la rievocazione si perde nei ricordi. I due fisici ricostruiscono il percorso della fisica di quegli anni, in particolare i tre anni, dal 1924 al 1927, durante i quali si ottiene l’interpretazione di Copenaghen. Forse alla fine fu un bene se Bohr lasciò Heisenberg nell’indeterminazione, senza una risposta alla sua domanda: non avendo un’indicazione di come comportarsi, non avendo alcuna conferma da parte di Bohr, Heisenberg non agì e fece tutta una serie di omissioni, consapevoli o meno, che determinarono l’insuccesso del programma atomico tedesco.

 

COMMENTO:

Leggere un testo teatrale non è sempre facile: meglio sarebbe assistere alla rappresentazione, perciò ho cercato su youtube e, quando ho riletto il libro la seconda volta, ho seguito sul libro le battute degli attori. Alla seconda lettura ho anche scelto di partire dai post scriptum di Frayn per capire meglio il testo e, in effetti, ha aiutato: conoscere il contesto storico, conoscere fino in fondo i fatti che erano solo accennati nello spettacolo ha davvero aiutato a comprendere meglio. Copenaghen aiuta ad addentrarsi negli sviluppi della fisica moderna, a conoscere più direttamente alcuni dei fisici coinvolti e ad avere un’altra prospettiva anche su alcuni fatti della seconda guerra mondiale.

 

 

“Adesso siamo tutti morti e sepolti, certo, e il mondo di me ricorda soltanto due cose. Una è il principio di indeterminazione, e l’altra è la mia misteriosa visita a Niels Bohr a Copenaghen, nel 1941. L’indeterminazione la capiscono tutti. O credono di capirla. Nessuno capisce il mio viaggio a Copenaghen.”

Pubblicato in Libri
Martedì, 06 Agosto 2013 08:05

Il caso, probabilmente

TRAMA: 
Il testo di tre spettacoli teatrali, che raccontano “la matematica, raccontando storie di vita, di paura e di avventura. Tre testi teatrali per esplorare il legame tra teoria e pratica e rendere la regina delle scienze un’esperienza artistica e accattivante.”
 
Il caso, probabilmente
La prima scena si ripete più volte, sempre uguale e al tempo stesso con esiti diversi: i protagonisti sono Claudio e la cognata Barbara. Claudio ha scoperto il tradimento della moglie del fratello e vuole ricattarla, ma se lei riuscirà a sconfiggerlo ai dadi, lui le restituirà i negativi e non parlerà con il fratello. 
Barbara perde la sua partita ai dadi, uccide Claudio e poi uccide se stessa, oppure uccide Claudio, ma è costretta a fuggire, oppure non riesce a uccidere Claudio e quindi deve lasciare il marito. Ultima alternativa: Barbara ha imparato il calcolo delle probabilità, vince la propria partita con il cognato, ottiene i negativi e può tornare dal marito come se nulla fosse successo.
 
Il dilemma del prigioniero
Vico e Ludo: due personaggi diversi o due facce della stessa persona? Il primo è il marito di Emma, uccisa in circostanze poco chiare. Vico ed Emma si erano ritirati in montagna per superare la morte del figlio, ma Vico ha tentato di far impazzire Emma, forse con la complicità di Ludo. O forse Ludo voleva aiutare e proteggere Emma? Comunque siano andate le cose, Ludo e Vico ora sono in galera e, se non vogliono passare lunghi anni in prigione, a causa della morte di Emma, devono trovare un modo per collaborare…
 
Parallelismi – Geometrie euclidee e non. Tre momenti drammatici
Il primo momento è rappresentato dal fallimento di due killer, che dovrebbero abbattere un aereo, ma troppo tardi si accorgono che la strada più breve tra due punti è diversa se viene tracciata su una sfera o su un piano.
Nel secondo momento, l’incontro tra un giovane allievo e un vecchio maestro presenta quello che potrebbe essere l’incontro tra Gauss, il vecchio, e coloro che hanno scardinato la tradizionale visione della geometria, negando il quinto postulato di Euclide. 
L’ultimo momento è l’incontro tra due diverse dimensioni, quella reale e quella del palcoscenico: da un lato Amleto – appartenente al mondo del teatro – dall’altro lo Spettro – appartenente al mondo reale. Lo Spettro vuole convincere Amleto della sua non realtà, ma Amleto, giustamente, ribadisce: “Chi ti dice che sei vero?”. In fondo, anche Amleto era convinto di essere vero…
 
.
 
COMMENTO:
Rileggere questi testi, dopo aver visto gli spettacoli a teatro, aiuta a scoprire una matematica diversa e a rendersi conto di quanto essa permei la nostra vita. 
Il saggio conclusivo di Valentina Colorni, la regista, riesce ad evidenziare, con sei parole, lo stretto legame tra la matematica e il teatro: l’astrazione, che da molti studenti è considerata una delle “colpe” della matematica, è la genesi del teatro. La matematica, come il teatro, ha una sua gratuità: nell’immediato non serve a nulla – al contrario della fisica, ad esempio – ed anche il teatro non è una necessità, non è finalizzato alla spiegazione razionale della realtà. Sia matematica che teatro si basano su delle convenzioni, ovvero delle regole del gioco molto particolari, senza le quali non potrebbe esistere alcuna possibilità di comunicazione tra palcoscenico e platea, ma allo stesso modo in matematica i postulati, le definizioni e gli assiomi sono le regole del gioco. La fantasia, la creatività che permette di costruire una nuova matematica descrive nuovi mondi esattamente come l’autore teatrale. E infine analisi e sintesi, che in matematica sono fondamentali per risolvere un problema, in teatro possono essere un aiuto per esprimere meglio un argomento. 
Una lettura consigliatissima, ma ancor più consigliato sarebbe poter assistere alle rappresentazioni teatrali: anche andare a teatro può essere un modo per conoscere ancora meglio e ancor più in profondità la matematica.
Pubblicato in Libri

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy