Giovedì, 01 Agosto 2013 15:43

L'enigma dei numeri primi

TRAMA:
L’introduzione della dimostrazione segna il vero inizio della matematica: l’intuizione da sola non basta e non serve nemmeno la verifica caso per caso, che potrebbe essere svolta da un computer. Gauss, principe dei matematici, dà un senso pieno alla dimostrazione e trova una certa regolarità nei numeri primi stabilendo che i numeri primi inferiori a un certo numero N sono N/lnN. Legendre perfeziona questa formula e nasce un’aspra disputa tra i due, vinta da Gauss che aveva effettuato un’analisi teorica, nettamente superiore ai tentativi del rivale.
Nel novembre del 1859, Riemann pubblica un saggio, di sole dieci pagine, nelle note mensili dell’Accademia di Berlino: solo dieci pagine perché, essendo un grande perfezionista, voleva pubblicare solo dimostrazioni rigorose. Determina una formula che fornisce il numero esatto di primi non maggiori di N, ma non va oltre: fuggendo dall’esercito invasore nel 1866, Riemann muore in Italia a soli trentanove anni e la sua solerte governante distrugge molti dei suoi appunti inediti, prima che qualcuno riesca a fermarla. Fra le sue carte, la dimostrazione non è mai stata trovata e fino a oggi i matematici non sono stati in grado di replicarla.
Agli inizi del Novecento, Hilbert riporta al centro dell’attenzione l’ipotesi, con il suo discorso al Congresso Internazionale dei matematici, nel quale elenca una serie di ventitre problemi, ritenendoli la linfa vitale della matematica: fra di essi l’ipotesi di Riemann, che secondo lui avrebbe sicuramente aperto nuove vie.
Con la seconda guerra mondiale e l’avvento del nazismo, l’Europa perde la propria centralità e molti matematici trovano rifugio a Princeton: Siegel, Selberg, Erdős,… fanno importanti passi avanti ma non giungono a una dimostrazione completa dell’ipotesi. Turing avrebbe solo potuto trovare un eventuale errore di Riemann, con il computer che consente solo di valutare ogni singolo caso. Fino ad ora ha permesso di trovare che 300 milioni di zeri si trovano sulla retta, facendo vincere a Enrico Bombieri due bottiglie di ottimo bordeaux in una scommessa contro Don Zagier: trecento milioni di zeri non sono una dimostrazione, ma una gran massa di indizi.
Con l’avvento di Internet, la teoria dei numeri ha assunto un ruolo di primo piano nelle applicazioni, visto che la cifratura RSA (da Rivest – Shamir – Adleman), che salvaguarda gran parte delle transazioni che avvengono su Internet, è basata sulla scomposizione di numeri con un elevato numero di cifre. L’ipotesi di Riemann aiuterebbe a capire la distribuzione dei numeri primi e cambierebbe anche la scomposizione dei numeri molto grandi: per ora contribuisce “solo” ad arricchire questa “odissea intellettuale” che non ha ancora avuto un lieto fine.
 
COMMENTO:
Libro molto interessante, spiegato con estrema semplicità e chiarezza. L’ipotesi di Riemann è la protagonista di una storia della matematica ricca di vicende umane, che si apre con il pesce d’aprile di Bombieri a dimostrazione del fatto che anche nella matematica più seria c’è spazio per l’umorismo. 
Adatto anche per studenti delle superiori.

Informazioni aggiuntive

  • Autori: du Sautoy Marcus
Letto 8225 volte Ultima modifica il Sabato, 10 Agosto 2024 16:18

3 commenti

  • Link al commento Carmine Giovedì, 01 Agosto 2013 15:47 inviato da Carmine

    Molto bello: riesce a coniugare fascino e passione. Ruota a varie velocità attorno al nucleo centrale senza mai annoiare.

  • Link al commento Ste Giovedì, 01 Agosto 2013 15:46 inviato da Ste

    Un libro interessantissimo, come anche "Il disordine perfetto" che sto leggendo ora! Marcus è un divulgatore fantastico! Mi piacerebbe assistere ad una sua lezione! Sono ossessionato dai numeri primi e dalla simmetria!

  • Link al commento Lodovico Giovedì, 01 Agosto 2013 15:46 inviato da Lodovico

    Un libro da consigliare in generale per una divertente e stimolante storia della matematica. Crea una certa diffidenza la mole del volume che, a prima vista, sembra insormontabile, ma, come ogni montagna, un passo alla volta si scoprono vie ed anfratti insospettabilmente interessanti e stimolanti

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy