Sabato, 23 Agosto 2014 17:06

La sezione aurea

TRAMA:

L’antica Grecia è a ragione considerata la culla della nostra cultura: scienze, filosofia, arte, letteratura, ma soprattutto matematica, hanno trovato qui i propri natali. Platone ebbe il merito di scoprire i poliedri regolari, detti appunto platonici, e di costruire la realtà su di essi: questi sono legati indissolubilmente alla sezione aurea e, con ogni probabilità, l’interesse per il rapporto aureo è scaturito proprio dai tentativi di costruirli, anche se i primi a parlare di numeri irrazionali pare siano stati i pitagorici, nel VI sec. a.C.

Con la pubblicazione, nel 300 a.C., degli Elementi di Euclide, l’opera matematica più grandiosa e influente che sia mai stata scritta, il rapporto aureo comincia a diffondersi. Scavalcando gli arabi, che si occuparono principalmente di algebra, si arriva a Leonardo Fibonacci, che ha avuto il merito di diffondere in Europa le cifre indo-arabiche. Fibonacci usò consciamente il rapporto aureo nella soluzione di alcuni problemi e, formulando il quesito dei conigli, ne ha ampliato in modo decisivo la portata e le applicazioni, grazie al legame trovato successivamente da Keplero.

Nel Rinascimento, alcuni pittori hanno fornito contributi matematici di un certo rilievo: il più prolifico fu Piero della Francesca, con tre opere matematiche, con le quali dimostra che la prospettiva è fondata solidamente su basi scientifiche. Alcune delle questioni algebriche che affrontò furono riprese dal matematico Luca Pacioli, che, con il suo Compendio de divina proportione, presenta un riassunto dettagliato delle proprietà del rapporto aureo, portando a un rinnovato e diffuso interesse per la sezione aurea.

Il rapporto aureo divenne fondamentale anche per il funzionamento dell’universo, grazie al contributo di Keplero, che – trovato convincente il sistema copernicano – scelse di separare le orbite dei pianeti con i solidi platonici. Il modello era sbagliato, ma era sicuramente innovativo.

Nel mondo dell’arte, Paul Sérusier fece uso del rapporto aureo in alcune opere, soprattutto per “controllare, e in qualche caso disciplinare” le sue invenzioni, mentre Le Corbusier, che all’inizio aveva idee negative al riguardo, fece culminare la sua ricerca nel “Modulor”, che era in grado di conferire dimensioni armoniose a tutto, dalle maniglie delle porte agli spazi urbani. Numerosi autori hanno sostenuto che il rettangolo aureo sarebbe esteticamente più soddisfacente di tutti gli altri rettangoli, tanto che uno dei fondatori della moderna psicologia, Gustav Theodor Fechner decise di effettuare degli esperimenti, negli anni Sessanta dell’Ottocento, per verificarlo. Nel secolo scorso, ne sono stati sottolineati l’ingenuità e i difetti metodologici, visto che “non sembra esserci alcuna base razionale della teoria estetica che considera la sezione aurea un ingrediente decisivo della bellezza delle forme visive”. Anche in ambito musicale, le speculazioni riguardanti il rapporto aureo sono numerose: accanto a usi incontestabili del rapporto aureo, ve ne sono altri dovuti all’immaginazione dei loro scopritori. Tutti i tentativi di svelare la presenza di fin varie creazioni artistiche, dalla pittura alla musica alla poesia, si basano sul presupposto che esista un canone di bellezza ideale, ma la storia ci dice che non sempre alla base della bellezza c’è la sezione aurea.

Per realizzare le tassellature del piano, si è sempre saputo che il pentagono – il poligono più legato al rapporto aureo – non è adatto a ricoprire una superficie in modo completo e regolare. Nel 1974, Roger Penrose, fisico di Oxford, ha scoperto due schemi fondamentali di intarsio per coprire una superficie, sfruttando una simmetria quintupla, ovvero basandosi sul rapporto aureo. Apparentemente questi suoi studi dovevano restare confinati nell’ambito della matematica ricreativa, ma nel 1984 l’ingegnere israeliano Dany Schectman ha trovato una lega di alluminio con simmetria quintupla.

Nell’ultimo capitolo, l’autore si concentra sulle diverse interpretazioni della matematica: tra la visione della matematica come dotata di un’esistenza indipendente dal pensiero umano e quella di una matematica inesistente al di fuori del pensiero, l’autore sostiene che solo gli assiomi sono frutto di una scelta umana, ma dopo di essi la matematica gode in un’esistenza autonoma. “Il rapporto aureo è un prodotto della geometria, un’invenzione umana. Ma gli uomini non immaginavano in quale magico regno di fate ed elfi quel prodotto li avrebbe portati.”

 

COMMENTO:

Storia della matematica, arte, musica, poesia sono gli ingredienti di questo prezioso libro, nel quale la sezione aurea non viene solo definita, ma ne viene indagata la presenza nelle opere d’arte più famose e nei posti meno comuni, come i quasi-cristalli. Proprio il carattere eclettico del libro permette di incontrare i gusti di tutti i lettori, non solo degli appassionati di matematica ed è in particolare consigliato a tutti coloro che si interessano di arte. Il lettore viene guidato partendo dai contenuti più semplici, come il significato dei numeri per i pitagorici, fino ad arrivare ai frattali, con la loro bellezza e complessità. Peccato manchino le immagini a colori, almeno nell’edizione della Rizzoli.

Informazioni aggiuntive

  • Autori: Livio Mario
  • Codice ISBN: 9788817016353
Letto 8820 volte Ultima modifica il Martedì, 13 Agosto 2024 21:10

1 commento

  • Link al commento michele de gasperi Domenica, 14 Settembre 2014 19:22 inviato da michele de gasperi

    Personalmente ho trovato poco entusiasmante questo libro.
    Non mi aspettavo infatti un libro complicato, noioso e sotto certi aspetti astruso, ma una lettura più scorrevole, magari più didascalica e descrittiva … Forse perché non ho ancora studiato determinate materie, ho ritenuto alcune informazioni inutili e carenti invece le descrizioni dei personaggi citati. Questo è il motivo per cui mi è piaciuta molto la parte delle appendici in cui vengono dimostrate alcune sottigliezze.
    Se poteva essere interessante la ricerca del rapporto aureo in svariati campi (musica, architettura, pittura, filosofia), mi ha deluso scoprire che la ricerca del “phi” è stata spesso una forzatura.

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy