TRAMA:
Ramanujan fu un eccentrico personaggio: nato in India nel 1887, si innamorò della matematica nel 1903 e, irretito dalla matematica pura, perse interesse per tutto il resto: gli venne così tolta la borsa di studio che aveva ottenuto.
La sua famiglia era ai limiti della miseria e di tanto in tanto Ramanujan pativa anche la fame. Cercò di arrangiarsi con qualche ripetizione, ma non era abile come insegnante. Cominciò a riportare i suoi appunti in alcuni quaderni che dimostrano il suo sviluppo fuori dalle convenzioni. I genitori lo sopportarono a lungo, ma alla fine si irritarono e, forse verso la fine del 1908, gli organizzarono un matrimonio combinato.
Il 1911 fu un anno positivo e promettente: ottenne un incarico che gli permetteva di mantenersi economicamente e di dedicare tutto il tempo che voleva alla matematica. Le serie furono il primo amore di Ramanujan e furono l’argomento del suo primo articolo pubblicato sul Journal. In questo, come in tutta la sua opera, Ramanujan trovò rapporti tra cose che sembravano senza rapporto. Le dimostrazioni che dava erano abbozzate o incomplete, ma con questa pubblicazione cominciò a farsi notare.
Gli eventi cospirarono per dirgli che sarebbe stato ascoltato con maggiore cognizione di causa dai matematici europei. Scrisse a Baker e a Hobson, ma entrambi gli risposero negativamente. Il 16 gennaio 1913, Ramanujan scrisse a un altro matematico di Cambridge, G. H. Hardy. E Hardy gli prestò ascolto. Fu la stranezza dei teoremi di Ramanujan a colpire Hardy, non la loro genialità. La lettera di risposta di Hardy era prodiga di incoraggiamenti e la carriera di Ramanujan si avviò velocemente, tanto che ricevette una borsa di studio dal Presidency College di Madras che lo rendeva libero di dedicarsi alla matematica: non aveva nient’altro da fare se non presentare un resoconto dei progressi fatti ogni tre mesi.
Con Hardy continuò il contatto epistolare, ma verso la metà di marzo la situazione rasentò la lite vera e propria. E Hardy non rispose per mesi. Nonostante questo, egli fece di tutto per portare Ramanujan in Inghilterra. Ma Ramanujan proveniva da una famiglia indù profondamente ortodossa: recarsi in Europa o in America costituiva una forma di contaminazione. Quando alla fine partì, Ramanujan attribuì la sua decisione all’ispirazione divina.
Appena arrivato in Inghilterra, Ramanujan era produttivo, lavorava sodo, era felice. Come Hardy poté verificare, alcuni suoi risultati erano sbagliati. Alcuni non erano importanti come a Ramanujan piaceva credere. Alcuni erano autonome riscoperte di ciò che i matematici occidentali avevano già scoperto anni prima. Molti, però, forse un terzo, come calcolò Hardy, o forse due terzi, come avrebbero calcolato i matematici più di recente, erano novità da mozzare il fiato.
Era stata una vera fortuna per Ramanujan finire tra le mani di Hardy, che spinse Ramanujan in accelerazione senza mettere la museruola alla sua creatività o spegnere le fiamme del suo entusiasmo. Ramanujan non aveva doveri ufficiali nell’ambito del college. Poteva immergersi nella matematica senza preoccuparsi di esigenze finanziarie, né sue né della sua famiglia.
Probabilmente dagli inizi del 1916, fu preda di una forte tensione nervosa. Non c’era solo la guerra: c’erano momenti in cui le piccole cose famigliari della vita dell’India meridionale gli mancavano terribilmente e, tra gli inglesi, non poteva non sentirsi un estraneo, perciò si chiuse in se stesso.
Per molti aspetti Hardy era il migliore e più fedele amico che Ramanujan avesse mai avuto. Era premuroso, leale e gentile con lui, ma non erano intimi. Ramanujan viveva i suoi problemi in solitudine e conduceva una vita irregolare, non dormiva e non mangiava, tanto che finì con il minare la sua salute. Sotto la guida di Hardy era andato bene, ma non era felice. Aveva impiegato tutte le sue energie nella matematica. Perciò si spezzò. Tanto che arrivò a tentare il suicidio.
Forse per paura di arrivare tardi, Hardy lavorò per ottenere la sua nomina alla Royal Society e subito dopo ottenne l’elezione al Trinity: i riconoscimenti che gli erano stati accordati avevano risollevato lo spirito di Ramanujan.
Tornò in India nell’aprile del 1919, ma tornava in uno stato di salute alquanto precario e si ritrovò nella fossa dei serpenti della sua famiglia, una bolgia che ribolliva di risentimento.
Per tutto l’anno trascorso in India, Ramanujan lavorò a nuove scoperte matematiche: le sue capacità intellettive si fecero in proporzione più acute e brillanti. Quattro giorni prima di morire stava ancora scarabocchiando.
Per quanto riguarda la comunità matematica, Ramanujan continua a vivere: “Scoprì così tanto, eppure lasciò agli altri ancora tanto di più da scoprire del suo giardino” disse Dyson.
Hardy morì nel 1947. E ancora a distanza di vent’anni, Ramanujan era rimasto parte di lui, un faro splendente, luminoso nella sua memoria. “Un uomo la cui carriera sembra piena di paradossi e contraddizioni, che sfida quasi tutti i canoni secondo i quali siamo abituati a giudicarci l’un l’altro e sul quale tutti probabilmente concorderemmo in un unico giudizio: che fu per certi versi un grandissimo matematico.”
COMMENTO:
Un libro interessante. Semplice anche per chi conosce poca matematica, visto che si tratta di una biografia. L’autore è riuscito, attraverso metafore e semplici esempi, a rendere l’idea del peso delle scoperte di Ramanujan. Molto scorrevole.