Mercoledì, 20 Luglio 2016 08:43

Archimede aveva un sacco di tempo libero

In questo testo, Codenotti ci propone l’infinito nella teoria degli insiemi di Cantor: l’argomento non è semplice, ma è presentato in modo accattivante, grazie al fumetto di Claudia Flandoli che si alterna alla trattazione più rigorosa. L’idea è nata durante le conferenze divulgative che Bruno Codenotti tiene nelle scuole: quale miglior modo di divulgare le conoscenze di un libro? In questo modo, il lettore può scegliere il proprio ritmo e aspettare che tutto sia chiaro prima di proseguire.

L’esplorazione dell’infinito comincia con gli insiemi finiti, così come nel fumetto Giacomo comincia l’esplorazione della vita universitaria e incontra Lara, sua compagna di corso. La semplicità degli insiemi finiti non deve indurre a una banalizzazione, come dimostrato dagli importanti concetti spiegati, che si prestano ad essere esplorati con numerosi esempi.

Nel secondo capitolo il problema dei buoi di Archimede e il premio per l’invenzione degli scacchi ci fanno prendere confidenza con numeri così grandi che ci fanno pensare all’infinito e le suggestioni del terzo capitolo, con i testi di letteratura e filosofia, ci aiutano a prendere coscienza del fatto che l’infinito non è dominio solo della matematica.

Il quarto capitolo sancisce il salto dal finito all’infinito e il fumetto è fondamentale per cogliere appieno questo salto: “mondi diversi seguono regole diverse” dice Lara a Giacomo, quando questi cerca di capire il funzionamento di un e-reader rifacendosi ai libri. L’infinità dei numeri e dei punti in geometria ci permette di prendere confidenza con l’infinito matematico, analizzando e confrontando, rimettendo in gioco e ridefinendo i concetti di minore, maggiore e uguale.

Nel settimo capitolo, la spiegazione della differenza tra insiemi continui e insiemi discreti ci è data ancora dal fumetto, che con una semplice ma geniale immagine aiuta a comprendere questa difficile definizione. La conclusione è da capogiro: gli infiniti infiniti matematici non possono che fare girar la testa.

Come sottolinea Giacomo, “infrangere i tabù porta a grandi scoperte”: è questa la descrizione del cammino percorso da Cantor che, nelle sue esplorazioni matematiche, ha incontrato anche numerosi ostacoli proprio da parte dei matematici suoi contemporanei.

 

Il libro si rivolge a un pubblico che abbia fatto propri i concetti della matematica di base, come i ragazzi del triennio delle superiori. Al termine di ogni capitolo, la nota storico-bibliografica consente di esplorare nuovi approfondimenti attraverso letture più impegnative, ma non solo: l’autore presenta anche la vicenda storica di Cantor e alcune curiosità che non hanno trovato spazio nella trattazione. 

Informazioni aggiuntive

  • Autori: Codenotti Bruno
Letto 4647 volte Ultima modifica il Giovedì, 21 Luglio 2016 20:31

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy