Visualizza articoli per tag: numero

Mercoledì, 31 Luglio 2013 21:17

Zero

TRAMA:
I matematici non parlano di numeri, ma di nessi e i numeri acquistano così sempre maggiore evanescenza. Con lo zero la questione si ingarbuglia ancora di più, visto che i nomi designano qualcosa, ma zero designa niente, esprime la quantità di quel che non c’è. Per questo l’itinerario temporale e concettuale dello zero è pieno di complicazioni e traversie. 
Contare, in fondo, significa associare specifici sostantivi numerici e simboli a raccolte di oggetti di vario tipo e ben presto in tutte le culture si riunirono gli oggetti che si desiderava contare in gruppi della medesima grandezza, per contare i gruppi invece degli oggetti. Con i numeri romani la rappresentazione restava goffa, ma già ai tempi dei Babilonesi possiamo trovare le tracce ancora rudimentali, con un semplice doppio cuneo, dello zero attuale. Non c’è traccia di zero nella Grecia omerica e classica e neppure in epoca alessandrina. Non c’era la notazione posizionale e le difficoltà di calcolo erano grandi, tanto più che i primi Greci non avevano portato a termine il processo di astrazione dei numeri da ciò che servivano a contare. È probabile che solo con Alessandro Magno i Greci abbiano scoperto la funzione decisiva dello zero nei calcoli, quando nel 331 a.C. invasero ciò che restava dell’impero babilonese. Infatti, nei loro papiri astronomici del III secolo a.C. troviamo il simbolo «0» a indicare lo zero.
Esso però non era ancora un numero: era usato come noi usiamo la punteggiatura. D’altra parte, il calcolo non godeva di molto prestigio sulle sponde dell’Egeo. Era chiamato «logistica» e lasciato ai mercanti: la passione dei Greci per la matematica era rivolta in larga misura alla geometria e i mercanti, lasciati a se stessi, si consolarono con l’abaco. Kaplan è convinto che proprio nell’abaco ci sia l’origine dello zero come lo conosciamo oggi: è verosimile che i sassolini spesso usati fossero tondeggianti; perciò sarebbe stato naturale rappresentarli nella scrittura e nei disegni con cerchietti pieni, che diventano cerchietti vuoti nel momento in cui sulla colonna non c’era nemmeno un contrassegno. 
È innegabile l’influenza che la cultura greca ebbe su quella indiana: la presenza dei semi di papavero nella sequenza di Archimede e nel racconto sul Buddha non può essere fortuita. Aryabhata, Varahamihira, Brahmagupta… tutti avevano un loro modo di indicare lo zero, con sinonimi che lo collocano più nella ragione discorsiva che in quella matematica. 
Nel 950, nella Spagna moresca, troviamo figure arabe particolari: sono i numeri da 1 a 9, senza lo zero. Questi numeri sono circondati da sciami di puntini che indicano il loro posto-valore: se sul numerale non c’è nessun puntino, è un’unità; se ce n’è uno, si tratta di una decina; se ce ne sono due, di un centinaio, e così via. Sono punti pieni e, benché piccoli, funzionano quasi come zeri nella numerazione posizionale.
Dobbiamo ancora vedere lo zero trattato come un numero: esso era una «condizione transitoria di una parte di tavoletta per calcoli». Il fatto è che qualunque cosa può essere un numero, purché si dimostri capace di socializzare con ciò che è già considerato tale: lo zero doveva poter essere sommato, sottratto e impiegato in moltiplicazioni e divisioni. 
Indipendentemente dalla cultura greca o da quella indiana, anche i Maya avevano il loro simbolo di zero: un uomo tatuato adorno di collana e con la testa piegata all’indietro. Mentre la cultura Maya agonizzava, i mercanti arabi trasportavano merci esotiche, racconti e tecniche in ogni dove. Furono forse mercanti arabi sulla via delle spezie e dell’avorio a portare lo zero in Cina. L’origine indiana dello zero cinese è rivelata non solo dalle sue forme, ma anche dall’ideogramma corrispondente, che alludeva alle ultime, rare gocce di acqua dopo un temporale. 
Di certo lo zero giunse in Occidente non più tardi del 970, ma la superstizione spinse i timorati di Dio a evitarlo, attirandogli le simpatie di coloro che sentivano il fascino dell’occulto. I numerali arabi facevano fatica ad imporsi, come dimostra il fatto che nel 1299 a Firenze il Consiglio cittadino emanò un’ordinanza che dichiarava illegale l’uso dei numeri nei libri contabili: le somme andavano indicate in parole, perché lo zero poteva essere facilmente mutato in 6 o 9. 
Fibonacci, nel 1202, pubblicò il Liber Abaci, nel quale parlava dei numerali arabi, da lui giudicati il miglior strumento di calcolo in cui si fosse imbattuto. Non si limitò a descriverne il sistema, ma da vero matematico si divertì a esplorarne le possibilità. Ma parlava di nove cifre indiane e del segno zero. 
I numerali arabi avanzavano in modo discontinuo, aiutati anche dall’invenzione della contabilità a partita doppia. Al tempo di Luca Pacioli, i numerali romani erano usati soprattutto per le date e per conferire solennità ai documenti, ma il modo in cui le somme erano archiviate era diverso da quello in cui erano ottenute.
Senza dare nell’occhio lo zero entrò nel Rinascimento insieme ai numerali arabi e si rese indispensabile ai nostri calcoli. John Napier, barone di Merchiston presso Edimburgo, ponendo le equazioni simili uguali a zero, ideò un metodo di soluzione valido per tutte. Ci voleva un tocco di genialità per pensare di utilizzare lo zero in questo modo. 
Nel XVII secolo, l’atteggiamento verso le equazioni stesse stava cambiando: si cominciavano a mettere a fuoco problemi di moto. Fra coloro che ragionavano per infinitesimi, due uomini giunsero allo stesso risultato quasi contemporaneamente: Isaac Newton e Gottfried Wilhelm Leibniz. Fu però soltanto alla fine del XIX secolo che in Francia e in Germania fu elaborata un’interpretazione del problema che sembrava finalmente soddisfacente. 
Ciò che nacque col calcolo infinitesimale non fu solo un modo di afferrare e controllare lo spettacolo del cambiamento, ma una nuova percezione della sede del significato. Il problema 0/0 fu finalmente risolto, anche se solo nel contesto delle pendenze: negli altri casi la divisione per zero rimane impossibile.
Il più grande trionfo dello zero nella sua opera di espansione della nostra conoscenza si ha grazie al calcolo infinitesimale: lo zero possiede la chiave per farci compiere la maggior parte delle imprese e con il minimo sforzo. Perché lo zero? Perché il valore della variabile nel punto in cui la funzione derivata si azzera è il numero che massimizza o minimizza il processo. 
Dove troviamo lo zero in natura? Non lo possiamo trovare nell’universo, colmo di radiazioni invisibili, non lo troviamo nelle campane di vetro, nonostante il lavoro di generazioni di ricercatori ci abbia portato sempre più vicini alla meta. Se siamo alla ricerca di uno zero all’interno della realtà fisica, non lo troveremo nemmeno nel tempo e neppure nel centro inerte delle cose. Lo zero può trovarsi nelle leggi, nelle relazioni fra le cose: ma esse non sono cose, non sono entità che esistono nella realtà e quindi nemmeno gli zeri che esse implicano sono realtà. 
Lo zero non è né positivo né negativo, anche se ci appare negativo quando pensiamo al suo significato metaforico: quanti zero scopriamo di aver incontrato nella nostra vita e persino di aver deriso! Oppure ci appare positivo se lo pensiamo come il vivere con umiltà: ridurre se stessi a zero, umiliando il proprio orgoglio. 
Dopo aver percorso la storia dello zero, le sue incarnazioni matematiche, fisiche e psicologiche, Kaplan conclude con il sistema binario, scoperto da Napier nel 1616, grazie al quale funzionano le nostre calcolatrici: tutti i numeri derivano da combinazioni di 0 e 1. Ma si può fare di più: von Neumann riconosce lo zero nell’insieme vuoto e da esso ricava tutti gli altri numeri. Esattamente come Pierce, filosofo americano, che nel 1880 fa discendere l’intera logica dalla negazione della verità. 
Davvero «Il nulla avrà origine dal nulla» come afferma il Lear shakespeariano?
 
COMMENTO:
A tratti complesso, ma nell’insieme scorrevole, il libro offre un’ottima panoramica della storia, non solo matematica, dello zero. Non è forse adatto a studenti delle superiori, visti alcuni passaggi un po’ complessi, anche se dal punto di vista matematico non presenta calcoli complessi o formule incomprensibili.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:16

Il numero

TRAMA:
CAPITOLO PRIMO – Genesi dei sistemi di numerazione
Dal contare come stabilire una corrispondenza biunivoca al contare come raggruppare: interessante la storia della nascita del numero, attraverso i sistemi di numerazione arcaici degli Egiziani, dei Babilonesi, dei Greci e dei Maya e quelli più moderni degli Indiani e degli Arabi.
 
CAPITOLO SECONDO – Sistemi posizionali di numerazione
Capitolo un po’ più complesso, dedicato allo studio delle rappresentazioni posizionali dei numeri attraverso le rappresentazioni algebriche dei codici. (interessante e curiosa la moltiplicazione araba, anche se non è spiegato il meccanismo).
 
CAPITOLO TERZO – Divisibilità e sistemi di numerazione
A partire dal teorema fondamentale dell’aritmetica, il capitolo si sviluppa con la dimostrazione della periodicità della rappresentazione dei numeri razionali in basi periodiche. Complesso dal punto di vista della comprensione: alcuni concetti sono espressi in modo eccessivamente e inutilmente complicato. In questo capitolo si fa riferimento anche al teorema di Eulero, ai numeri ciclici e ai primi di Mersenne. (curiosa la prova di divisibilità di Pascal)
 
CAPITOLO QUARTO – Numeri reali
Si comincia con il dominio di integrità dei numeri razionali, si passa attraverso il metodo assiomatico e la commensurabilità, con ampio riferimento ai pitagorici e al teorema di Pitagora. Si arriva al teorema di Fermat e alla dimostrazione dell’incommensurabilità di , oltre alla dimostrazione dell’impossibilità fisica di rappresentarla. Il capitolo si conclude con la presentazione dei tre problemi irrisolvibili dell’antichità, costruibili solamente con riga e compasso.
 
CAPITOLO QUINTO – Frazioni continue
Innanzi tutto viene presentato l’algoritmo euclideo per il calcolo del MCD interessante perché iterativo, carattere tipico proprio delle frazioni continue.
 
CAPITOLO SESTO – Fratture
A partire dal Piano di Argand, o semplicemente piano complesso, il capitolo si snoda attraverso la rappresentazione geometrica dei numeri e dei nodi primi (si definiscono anche i numeri primi gaussiani); le fratture sono un modo per rappresentare i numeri irrazionali, che nessuna retta con pendenza razionale può incontrare: ovvero è un ipotetico raggio luminoso infinitamente sottile che si propaga all’infinito senza incontrare un nodo. Nello sviluppo del capitolo viene rivisitato anche il calcolo del MCD.
 
CAPITOLO SETTIMO – Infinito 
Sicuramente il capitolo più interessante, anche se costituisce solo un assaggio dell’argomento, essendo poco sviluppato. “La strada per l’infinito è disseminata di paradossi, e occorre prestare grande attenzione quando si estrapola un ragionamento da qui a lì. Ciò può sembrare una naturale estensione di leggi e regole inerenti all’ambito della nostra più prossima sfera d’azione, in altre parole, i primi (e pochi!) numeri interi, talvolta può portare a irrisolvibili contraddizioni”. È il caso delle serie convergenti e dei paradossi sulle serie infinite, dell’Hotel Hilbert e dei paradossi di Zenone, dell’Horror infiniti dei Greci, al quale il metodo di esaustione di Eudosso si oppone. Solo Cantor parla di infinito attuale, contro l’infinito potenziale di Aristotele, solo Cantor cerca di numerare i vari tipi di infinito, di confrontarli l’uno con l’altro.
 
COMMENTO:
Libro a tratti molto difficile, inutilmente complicato laddove i calcoli avrebbero potuto essere presentati più semplicemente. Interessante e scorrevole il primo capitolo, sulla genesi dei sistemi di numerazione, facile il quarto, sui numeri reali, molto interessante il quinto, sulle frazioni continue e riduttivo il settimo, sull’infinito.
Pubblicato in Libri
Etichettato sotto

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy