Argomento

Categoria

Tag

Mercoledì, 17 Aprile 2019 22:40

17 Aprile 2019

Verifica di matematica, classe seconda liceo scientifico. 

Argomento: sistemi e disequazioni di secondo grado e di grado superiore, problemi. 

 

Durata: due ore.

Pubblicato in Esercizi
Giovedì, 16 Ottobre 2014 14:15

L'assassinio di Pitagora

TRAMA:

La vicenda ha inizio il 25 marzo del 510 a.C. e si conclude, quasi cinque mesi dopo, il 12 agosto. La scena iniziale vede Pitagora, l’uomo più influente del periodo, davanti ai sei uomini più importanti della sua scuola, i Grandi Maestri tra i quali vuole trovare un successore: “solo colui che fosse stato nominato suo successore avrebbe ricevuto gli ultimi insegnamenti, salendo così un altro gradino sulla scala tra l’uomo e la divinità”. All’improvviso, Cleomenide, uno dei Maestri, muore avvelenato dalla mandragola contenuta nel vino che sta bevendo.

Qualche giorno dopo, Akenon, egizio noto per la sua abilità a investigare, si trova a Sibari, presso Glauco, un aristocratico che vuole verificare un tradimento. Akenon ristabilisce la verità, ma solo l’intervento di Arianna, la figlia di Pitagora, lo salva dalle conseguenze. Pitagora vuole coinvolgerlo nelle indagini, ma inizialmente Akenon non ha intenzione di prendervi parte: solo la seconda morte lo convincerà a fermarsi a Crotone per risolvere il mistero. Arianna lo aiuta nelle indagini, mentre Cilone, membro del Consiglio dei Mille, trama contro i pitagorici e tenta di eliminare Akenon, guardato con ostilità perché straniero e perché cerca di risolvere il caso.

 

COMMENTO:

Il libro è fedele agli episodi storici del VI sec. a.C., periodo nel quale Pitagora è stato uno degli uomini più influenti. I personaggi principali come Milone, il genero di Pitagora, Cilone, vendicativo e meschino, e Telis, il capopopolo sibarita, sono realmente esistiti e reale è la vicenda che li vede coinvolti, almeno nella sua parte principale, se escludiamo la finzione letteraria del giallo.

Nonostante le sue 700 pagine, la vicenda scorre velocemente, mentre si viene catturati dal mistero e dalla storia di Akenon e Arianna, sia per il loro passato che per quanto si trovano a condividere.

Geniale la trovata dell’autore che presenta alcune pagine di un’inesistente Enciclopedia matematica, scritta da Socram Ofisis nel 1926 (Socram è Marcos al contrario): si comincia con la storia di Pitagora e si continua con la presentazione dei contenuti matematici, ovvero il pentacolo, il pi greco, la sezione aurea, il teorema di Pitagora e i numeri irrazionali.

Il libro è consigliato a tutti coloro che amano la lettura, perché è un modo diverso dal solito per imparare qualcosa della matematica e della filosofia del mondo pitagorico e della storia della fine del VI secolo a.C.

Per chi volesse avere ulteriori informazioni, può visitare il sito dell’autore http://www.marcoschicot.com, nel quale viene raccontata la genesi del libro, della quale è responsabile Lucia, la primogenita di Chicot.

Pubblicato in Libri
Lunedì, 01 Settembre 2014 16:41

1 Settembre 2014

Verifica di matematica, classe seconda liceo scientifico. 

Argomento: verifica di recupero del debito.

 

Durata: due ore.

Pubblicato in Esercizi
Sabato, 23 Agosto 2014 17:06

La sezione aurea

TRAMA:

L’antica Grecia è a ragione considerata la culla della nostra cultura: scienze, filosofia, arte, letteratura, ma soprattutto matematica, hanno trovato qui i propri natali. Platone ebbe il merito di scoprire i poliedri regolari, detti appunto platonici, e di costruire la realtà su di essi: questi sono legati indissolubilmente alla sezione aurea e, con ogni probabilità, l’interesse per il rapporto aureo è scaturito proprio dai tentativi di costruirli, anche se i primi a parlare di numeri irrazionali pare siano stati i pitagorici, nel VI sec. a.C.

Con la pubblicazione, nel 300 a.C., degli Elementi di Euclide, l’opera matematica più grandiosa e influente che sia mai stata scritta, il rapporto aureo comincia a diffondersi. Scavalcando gli arabi, che si occuparono principalmente di algebra, si arriva a Leonardo Fibonacci, che ha avuto il merito di diffondere in Europa le cifre indo-arabiche. Fibonacci usò consciamente il rapporto aureo nella soluzione di alcuni problemi e, formulando il quesito dei conigli, ne ha ampliato in modo decisivo la portata e le applicazioni, grazie al legame trovato successivamente da Keplero.

Nel Rinascimento, alcuni pittori hanno fornito contributi matematici di un certo rilievo: il più prolifico fu Piero della Francesca, con tre opere matematiche, con le quali dimostra che la prospettiva è fondata solidamente su basi scientifiche. Alcune delle questioni algebriche che affrontò furono riprese dal matematico Luca Pacioli, che, con il suo Compendio de divina proportione, presenta un riassunto dettagliato delle proprietà del rapporto aureo, portando a un rinnovato e diffuso interesse per la sezione aurea.

Il rapporto aureo divenne fondamentale anche per il funzionamento dell’universo, grazie al contributo di Keplero, che – trovato convincente il sistema copernicano – scelse di separare le orbite dei pianeti con i solidi platonici. Il modello era sbagliato, ma era sicuramente innovativo.

Nel mondo dell’arte, Paul Sérusier fece uso del rapporto aureo in alcune opere, soprattutto per “controllare, e in qualche caso disciplinare” le sue invenzioni, mentre Le Corbusier, che all’inizio aveva idee negative al riguardo, fece culminare la sua ricerca nel “Modulor”, che era in grado di conferire dimensioni armoniose a tutto, dalle maniglie delle porte agli spazi urbani. Numerosi autori hanno sostenuto che il rettangolo aureo sarebbe esteticamente più soddisfacente di tutti gli altri rettangoli, tanto che uno dei fondatori della moderna psicologia, Gustav Theodor Fechner decise di effettuare degli esperimenti, negli anni Sessanta dell’Ottocento, per verificarlo. Nel secolo scorso, ne sono stati sottolineati l’ingenuità e i difetti metodologici, visto che “non sembra esserci alcuna base razionale della teoria estetica che considera la sezione aurea un ingrediente decisivo della bellezza delle forme visive”. Anche in ambito musicale, le speculazioni riguardanti il rapporto aureo sono numerose: accanto a usi incontestabili del rapporto aureo, ve ne sono altri dovuti all’immaginazione dei loro scopritori. Tutti i tentativi di svelare la presenza di fin varie creazioni artistiche, dalla pittura alla musica alla poesia, si basano sul presupposto che esista un canone di bellezza ideale, ma la storia ci dice che non sempre alla base della bellezza c’è la sezione aurea.

Per realizzare le tassellature del piano, si è sempre saputo che il pentagono – il poligono più legato al rapporto aureo – non è adatto a ricoprire una superficie in modo completo e regolare. Nel 1974, Roger Penrose, fisico di Oxford, ha scoperto due schemi fondamentali di intarsio per coprire una superficie, sfruttando una simmetria quintupla, ovvero basandosi sul rapporto aureo. Apparentemente questi suoi studi dovevano restare confinati nell’ambito della matematica ricreativa, ma nel 1984 l’ingegnere israeliano Dany Schectman ha trovato una lega di alluminio con simmetria quintupla.

Nell’ultimo capitolo, l’autore si concentra sulle diverse interpretazioni della matematica: tra la visione della matematica come dotata di un’esistenza indipendente dal pensiero umano e quella di una matematica inesistente al di fuori del pensiero, l’autore sostiene che solo gli assiomi sono frutto di una scelta umana, ma dopo di essi la matematica gode in un’esistenza autonoma. “Il rapporto aureo è un prodotto della geometria, un’invenzione umana. Ma gli uomini non immaginavano in quale magico regno di fate ed elfi quel prodotto li avrebbe portati.”

 

COMMENTO:

Storia della matematica, arte, musica, poesia sono gli ingredienti di questo prezioso libro, nel quale la sezione aurea non viene solo definita, ma ne viene indagata la presenza nelle opere d’arte più famose e nei posti meno comuni, come i quasi-cristalli. Proprio il carattere eclettico del libro permette di incontrare i gusti di tutti i lettori, non solo degli appassionati di matematica ed è in particolare consigliato a tutti coloro che si interessano di arte. Il lettore viene guidato partendo dai contenuti più semplici, come il significato dei numeri per i pitagorici, fino ad arrivare ai frattali, con la loro bellezza e complessità. Peccato manchino le immagini a colori, almeno nell’edizione della Rizzoli.

Pubblicato in Libri
Martedì, 20 Agosto 2013 07:12

La crisi degli irrazionali

Indice:

  • La scoperta degli irrazionali
  • La dimostrazione dell’irrazionalità di radice di 2
  • La duplicazione del cubo
  • Un irrazionale famoso: pi greco
  • Origine del simbolo di radice 

 

BIBLIOGRAFIA

Denis Guedj, Il teorema del pappagallo, Longanesi & C., Milano, 2000
Lucio Lombardo Radice, La matematica da Pitagora a Newton, Franco Muzzio Editore, Trento, 2003
Pierluigi Pizzamiglio, La storia della matematica, I.S.U. Università Cattolica, Milano, 1995
Midhat Gazalé, Il numero, Edizioni Dedalo, Bari, 2001
Theoni Pappas, Le gioie della matematica, Franco Muzzio Editore, Padova, 1995
Morris Kline, Storia del pensiero matematico, Einaudi, Torino, 1991
Enrico Giusti (a cura di), Pitagora e il suo teorema, Edizioni Polistampa, Firenze, 2001
F. Conti, E. Giusti (a cura di), Oltre il compasso, Edizioni Polistampa, Firenze, 2000
Carl B. Boyer, Storia della matematica, Oscar Saggi Mondadori, Milano, 1980
O. Batoli, G. De Rinaldis, MATEMATICA 2 Idee metodi applicazioni, Marietti Scuola
P. Oriolo, A. Coda, con la collaborazione di L. Tess, CORSO DI MATEMATICA (2), Edizioni Scolastiche Bruno Mondatori
G. Bucchini, E. Magi, M. Ottaviano, A. Gambardella, CORSO DI MATEMATICA (2), Calderoni
a cura di E. Gallo, Attività, teoria, esercizi per FARE MATEMATICA (1 – 2), Sei

Pubblicato in Storia