Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Martedì, 28 Luglio 2020 21:35

La nonna di Pitagora

«La nonna di Pitagora» è stato pubblicato nel 2013 dalla Casa Editrice Dedalo ed è stato scritto da Bruno D’Amore e Martha Isabel Fandiño Pinilla, entrambi matematici, entrambi impegnati nei master post-laurea e nei dottorati di ricerca in Didattica della Matematica.

Il libro, che si rivolge agli adolescenti, è una raccolta di dieci racconti dedicati a importanti matematici: Pitagora, Archimede, Euclide, Ipazia, Maria Gaetana Agnesi, Eudosso, Talete, Cartesio, Eulero e Giuseppe Peano. I loro importanti risultati sono descritti in forma di “racconti menzogneri”, ovvero la storia che viene raccontata è fantasiosa, totalmente inventata e utilizza la casualità e l’intervento di personaggi secondari per spiegare il modo in cui sono stati raggiunti importanti risultati. Così la nonna di Pitagora lo aiuta nella dimostrazione del suo teorema; Archimede viene aiutato dalla sorella Iliada che gli permette di trovare la formula del volume della sfera, facendo ricorso a una simpatica e famosa filastrocca; Euclide ha l’aiuto dello zio, che gli suggerisce di classificare come postulato il ben noto postulato delle parallele; Ipazia, poco prima di essere uccisa, viene aiutata dal monaco Atanasio nelle sue riflessioni sulle coniche; Maria Gaetana Agnesi dà il nome di versiera alla sua curva grazie a un mendicante che glielo suggerisce; Eudosso trova il volume della piramide grazie all’intervento di uno schiavo che gli realizza dei solidi con il fango; Talete deve il suo celebre teorema, in questo caso la misurazione dell’altezza di una colonna, all’intervento dei suoi figli, gemelli; Cartesio inventa il piano cartesiano, grazie all’intervento di un prete che disegna l’asse delle ordinate; Eulero riesce a dimostrare il problema dei ponti di Königsberg, grazie all’intervento della moglie, poco prima dell’incendio che distrugge la sua casa; Peano ammette lo zero tra i numeri naturali, grazie all’intervento della sua governante.

Questa prima parte, che è volutamente favolistica e parabolica, ha un intento anche didattico: descrivere in qualche modo la scoperta casuale di grandi risultati matematici e al tempo stesso permettere allo studente di interiorizzare meglio questi risultati, grazie al racconto. Nella seconda parte, però, ci sono le biografie di questi importanti matematici, accompagnate dai risultati conseguiti nel corso della loro carriera. Il cambio di passo tra le due parti viene segnalato anche dalle illustrazioni di Franco Grazioli che, nella prima parte, aiutano la memoria fotografica, mentre sono poco presenti nella seconda parte. Il libro si apre con la prefazione di Maurizio Matteuzzi, filosofo del linguaggio, scomparso recentemente.

«Tutti dicono che gli adolescenti odiano o, per lo meno, non amano la matematica; ma non sarà perché la vedono come intoccabile, lontana dalla loro vita reale, perfetta, cristallina, intoccabile?». Eppure sappiamo che «si appropriano di tutto quel che li entusiasma», perciò perché non usare questo entusiasmo?

Pubblicato in Libri
Venerdì, 11 Luglio 2014 14:12

Il caso Cartesio

TRAMA:

Il romanzo parla della morte di Cartesio, tutt’ora oggetto di numerose congetture e ipotesi: la polmonite non convince il dottor Eike Pies, medico e storico tedesco, che ha scoperto una lettera scritta da Van Wullen, secondo medico della regina Cristina di Svezia, a un collega. Nella lettera, il medico descrive i sintomi di Cartesio, non riferibili alla polmonite, ma all’avvelenamento. Nel romanzo, Bondi parte dagli avvenimenti storici per presentarci la sua verità: ha incontrato personalmente il dottor Pies, dopo aver letto il suo libro, e ha deciso di scriverne a sua volta per riproporre la necessità di ristabilire la verità all’attenzione generale.

L’intreccio si sviluppa seguendo tre linee principali, che vengono presentate alternate: la morte di Cartesio, la conversione della regina Cristina e, ai giorni nostri, il test dell’assorbimento atomico sul teschio. Nella parte riguardante la morte di Cartesio, l’autore ci presenta le varie ipotesi di complotto che sono state indagate nel corso degli anni, con i personaggi che ruotano attorno alla figura del filosofo. La parte riguardante la conversione della regina Cristina ha, tra gli attori principali, Raimondo Montecuccoli, generale dell’impero asburgico, che, quattro anni dopo la morte del filosofo, riceve l’ordine di Ferdinando III d’Asburgo di recarsi a Stoccolma per un’importante missione diplomatica. Il generale ha il compito di accompagnare Cristina a Roma, visto che ha manifestato il desiderio di convertirsi al cattolicesimo, ma, nel corso della vicenda romanzata, Montecuccoli – che ha capito che la morte di Cartesio ha coinvolto emotivamente la regina – decide di indagare per capire le reali cause della morte del filosofo.

L’ultima parte della storia è ambientata nel presente, precisamente nel 2009 e tra i protagonisti, oltre al dottor Eike Pies, ci sono Elisabetta Palatini, dottoranda in filosofia presso l’Università di Parma, e Thomas Doyle, professore di filosofia presso la Oxford University. Partendo proprio da uno scritto lasciato da Montecuccoli, una sua lettera indirizzata al Papa e scritta sul letto di morte, i due studiosi vogliono stabilire la verità riguardo la morte di Cartesio e decidono di trafugarne il teschio, conservato al Musée de l’Homme di Parigi per poterlo sottoporre al test dell’assorbimento atomico.

 

COMMENTO:

L’intreccio delle tre vicende permette di avvicinarsi poco a poco alla conclusione, scoprendo la verità dell’autore sulla morte di Cartesio. Al termine del romanzo, inoltre, la nota di Bondi permette di ricostruire la verità storica della vicenda e stupisce scoprire quanto l’autore abbia mantenuto il legame con la realtà.

Il romanzo è davvero coinvolgente e alla portata di tutti, consigliato a chi vuole “incontrare” la figura di Cartesio in un modo non convenzionale. La verità sulla sua morte è ancora oggetto di congetture e ipotesi, ma chissà che prima o poi si possa giungere a una conclusione, grazie anche alle nuove analisi che la scienza ci mette a disposizione.

Pubblicato in Libri
Giovedì, 01 Agosto 2013 16:31

Il taccuino segreto di Cartesio

TRAMA:
Cartesio nacque il 31 marzo del 1596. Studiò presso il collegio dei gesuiti a La Fléche e, a causa della sua gracilità, il padre chiese una cura particolare per lui: gli venne quindi concesso di dormire fino a tardi e questo gli permise di sviluppare un metodo di studio autonomo. Nel 1618 si recò in guerra come volontario con Maurizio di Nassau: non pagato, poté però godere di grande libertà e studiare liberamente la scienza.
La mattina del 10 novembre del 1618, Cartesio si trovava a Breda quando, sul tronco di un albero nella piazza principale della città, venne affisso un manifesto. Un olandese spiegò a Cartesio il quesito e questi giunse alla soluzione: la risoluzione dell’enigma olandese riempì Cartesio di entusiasmo per la matematica. Gli aveva rivelato di avere un dono speciale. Cominciò a credere che la matematica racchiudesse il segreto che dà accesso alla comprensione dell’universo. La maggior parte delle mattine al campo rimaneva a letto a scrivere e a leggere di matematica e a esplorarne le applicazioni
Accampato sulle sponde del Danubio, con l’esercito di Massimiliano duca di Baviera, nella notte tra il 10 e l’11 novembre 1619, Cartesio trovò i fondamenti di una mirabile scienza, come scrive nell’opera Olympica, a seguito di tre sogni, che interpretò come l’indicazione che la sua missione nella vita sarebbe stata l’unificazione delle scienze. L’opera di Cartesio avrebbe fatto luce su tutta la matematica, restituendo la sapienza dell’antica Grecia al nostro mondo moderno e avrebbe preparato il terreno per lo sviluppo della matematica fino al XXI secolo.
Nel 1620, Cartesio lasciò l’esercito e all’inizio del 1623 tornò a Parigi dove studiò geometria in solitudine e trascrisse le sue deduzioni in un taccuino, in un linguaggio criptico per evitare che qualcuno potesse trarre la conclusione che era un affiliato dei Rosacroce, una setta che studiava la scienza in segreto per evitare le persecuzioni dell’Inquisizione: se fosse stato identificato come tale, la sua carriera scientifica e forse la sua sicurezza avrebbero potuto essere in pericolo.
Alla fine del 1628, Cartesio si trasferì in Olanda: nel Discorso sul Metodo, dichiarò che si era trasferito in Olanda perché desiderava allontanarsi dai luoghi in cui aveva delle conoscenze e vivere in un paese in cui una popolazione attiva e prospera godeva i frutti della pace. Inoltre in Olanda le leggi che regolavano la stampa delle opere erano più liberali e probabilmente anche questo ebbe il proprio peso nella decisione di Cartesio. Per vent’anni continuò a vagare per il paese, mantenendo contatti epistolari con gli intellettuali d’Europa e con l’amico Mersenne, attraverso il quale filtrava tutta la corrispondenza. 
Nel 1629 Cartesio cominciò a scrivere un’opera sulla fisica e la metafisica, che doveva essere un tentativo di riconciliare la scienza con la fede religiosa, ma la notizia del processo di Galilei lo convinse a non pubblicare le proprie considerazioni, che videro la luce solo quattordici anni dopo la sua morte. 
Durante la sua permanenza ad Amsterdam, ebbe una storia con la sua domestica Hélena Jans, dalla quale ebbe una figlia il 19 luglio del 1635, Francine, che morì di scarlattina nel settembre del 1640: per Cartesio fu una grossa sofferenza. 
Cartesio pubblicò a Leida, nel 1637, in forma anonima il Discorso sul metodo per ben condurre la propria ragione e ricercare la verità nelle scienze. Più la Diottrica, le Meteore e la Geometria che sono saggi di questo metodo. Il libro venne pubblicato in francese, per consentirne una maggiore diffusione, ma in Francia non venne mai pubblicato. La filosofia di Cartesio, che era esposta nel Discorso (oltre che nelle sue opere successive), costituì la base del razionalismo seicentesco, una filosofia che pone l’accento sulla ragione e l’intelletto piuttosto che sul sentimento e l’immaginazione
Cartesio rompe deliberatamente con il passato, ed è deciso a iniziare da capo la ricerca della verità, senza mai fidarsi dell’autorità di qualsiasi filosofia precedente. […] Il suo trattato fu un grande successo editoriale in tutta Europa, ma le polemiche suscitate da quest’opera lo indussero ad allontanarsi ancora di più dalla gente e a interagire con il mondo esterno quasi esclusivamente per lettera.
Cominciò a lavorare alla scoperta che l’ha reso più famoso, il piano cartesiano, e dimostrò che era possibile risolvere con riga e compasso la costruzione della radice quadrata di un numero ma non quella della radice cubica, risolvendo il problema di Delo.
Venne contattato dalla principessa Elisabetta di Boemia, che viveva anch’essa in esilio in Olanda: aveva letto il Discorso e voleva approfondirne la filosofia. Si conobbero nel 1642 e la principessa divenne un’impegnata studiosa della filosofia di Cartesio. Si scambiarono numerose lettere, molto affettuose, tanto che un biografo ipotizzò una relazione intima tra i due. 
Sfinito dalla querelle di Utrecht, durante la quale venne accusato di diffamazione ai danni di Voetius e di ateismo si recò a Parigi, dove conobbe Claude Clerselier, consigliere del Parlamento e appassionato della sua filosofia. Questi gli fece conoscere Pierre Chanut, suo cognato, che divenne presto diplomatico di Francia in Svezia, da dove fece da tramite tra Cartesio e la regina Cristina: Chanut intendeva servirsi della cultura per cementare l’alleanza tra la Francia e la Svezia, e Cartesio rientrava a meraviglia in questo piano.
Cartesio accettò con riluttanza l’invito della regina a recarsi in Svezia per insegnarle la sua filosofia e partì nel 1649. La regina si mostrò una studentessa perfetta, ma voleva ricevere le lezioni di Cartesio dalle cinque del mattino. Cinque mesi dopo l’arrivo a Stoccolma, Cartesio si ammalò e gli venne diagnosticata una polmonite. Per i primi due giorni, Cartesio rifiutò di consultare un medico, ma poi dovette cedere alle insistenze della regina, che gli inviò il suo “secondo dottore”, nemico acerrimo del filosofo. Al terzo giorno, sentendosi meglio, Cartesio chiese che gli venisse preparata una bevanda alcolica con del tabacco: la bevanda gli venne preparata dal medico e, stranamente, Cartesio subì un peggioramento nelle sue condizioni di salute. Morì qualche giorno dopo, l’11 febbraio del 1650.
Chanut, senza consultarsi con nessuno, decise di mandare tutti gli scritti di Cartesio al cognato Clerselier a Parigi, che ne mantenne il possesso fino alla propria morte, avvenuta nel 1684. In seguito scomparvero. 
Nel corso dei suoi studi, Leibniz si appassionò alla filosofia di Cartesio e voleva leggerne tutti gli scritti, per questo si rivolse a Clerselier, nel giugno del 1676. Leibniz aveva gli strumenti per decifrare il linguaggio che Cartesio aveva usato nel suo taccuino, intitolato De solidorum elementis, nel quale il filosofo parlava dei solidi platonici. Leibniz non copiò interamente il taccuino, ma si limitò ad aggiungere alcune note a margine, che solo nel 1987 verranno decifrate da Pierre Costabel. Cartesio aveva analizzato i misteriosi solidi di Platone e tra questi oggetti geometrici tridimensionali aveva scoperto la regola che governa la loro struttura. Era il Santo Graal della matematica greca, qualcosa che i greci avevano agognato di possedere. Ma Cartesio non aveva rivelato a nessuno la sua scoperta. La formula non gli fu quindi mai attribuita e venne in seguito indicata come Formula di Eulero
Gli sforzi di Cartesio per tenere nascoste le sue scoperte furono inutili, visto che le sue opere vennero messe all’Indice nel 1663 e furono ristampate solo nel 1824.
 
COMMENTO:
Interessante e originale biografia di Cartesio, costruita a partire da un taccuino mai ritrovato che lascia aperto un enigma: Cartesio appartenne realmente alla setta dei Rosacroce? Ed inoltre: il taccuino può dimostrare questa appartenenza? 
Leggendo questo libro, non potremo avere una risposta a queste domande, ma potremo essere maggiormente consapevoli della grandezza del genio di Cartesio, che ha saputo anticipare la formula di Eulero.
Pubblicato in Libri