Ricerca in categoria "Libri"

Titolo

Autore

Tag

Titolo A-Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Giovedì, 01 Agosto 2013 15:50

Sophie Germain una matematica dimenticata

TRAMA:
Sophie Germain nasce il primo aprile del 1776. A tredici anni scopre il suo interesse per la matematica, leggendo la “Storia della matematica” di Jean-Étienne Montucla, trovato nella biblioteca paterna. Leggendo l’episodio di Archimede, arriva a concludere che se l’analisi di un problema geometrico poteva essere tanto interessante da anteporsi alla preoccupazione per la sopravvivenza, quello della matematica doveva essere veramente un mondo affascinante
Studia da autodidatta, contravvenendo gli ordini della famiglia, contraria a questa sua passione, ma dal 1794 può frequentare l’École Polytechnique, assumendo l’identità di un ex studente, tale Antoine-Auguste Le Blanc. Tra gli insegnanti, Lagrange restò colpito dall’ingegnosità di Le Blanc e chiese un incontro, durante il quale la Germain fu costretta a rivelare la propria identità. In Lagrange Sophie trovò un amico e finalmente un insegnante. Lagrange la mise a conoscenza dell’esistenza del problema dell’Ultimo Teorema di Fermat e, arrivata a un risultato importante, Sophie osò scrivere a C.F. Gauss, firmandosi con il suo pseudonimo. La lettera di Sophie suscitò in Gauss viva impressione e stupore per la profondità dei risultati da lei ottenuti
Nel 1806, a seguito dell’invasione della Prussia da parte di Napoleone, Sophie intervenne presso un generale, amico del padre, perché facesse in modo che Gauss non corresse pericoli. Fu così che Gauss venne a conoscenza della vera identità della Germain: “… quando una persona del suo sesso che, secondo i nostri costumi e pregiudizi, deve incontrare difficoltà infinitamente superiori a quelle degli uomini nel familiarizzare con queste scabrose ricerche, riesce nondimeno a sormontare gli ostacoli ed a penetrare le parti più oscure della materia, allora senza dubbio ella deve possedere il coraggio più elevato, talenti straordinari e un genio superiore.
A seguito dei suoi lavori, ricevette una medaglia dall’Institut de France e fu la prima donna ammessa a seguire le lezioni dell’Accademia delle Scienze. Ricevette un premio di 3000 franchi da Napoleone, ma non si presentò a ritirarlo, a causa della sua timidezza. 
Grande fu il suo lavoro: la sua influenza sulla comunità scientifica era tale da far eleggere Fourier come segretario perpetuo all’Accademia delle Scienze e fu l’unica a rendersi conto delle capacità di Galois.
Proprio a seguito delle sue abilità, Gauss chiese e ottenne che l’Università di Gottinga le conferisse una laurea “honoris causa”, ma ella morì, il 26 giugno del 1831, prima che le venisse conferita.
 
Le lettere presenti nel testo sono in ordine cronologico, vanno dal 1802 al 1831. Sono ventiquattro lettere, ma l’ultima è di Sophie Germain e indirizzata a Guglielmo Libri. Una lettera è del Libraio Bernard alla madre, ma le altre sono tutte per lei: tra i matematici Cauchy (due), Delambre (due), Fourier (sei), Gauss (una), Lagrange (una), Legendre (quattro), Navier (una), Poisson, nei confronti del quale non nutriva una buona opinione (una). Poi c’è una lettera di Choron, teorico della musica, una di D’Ansse de Villoison, ellenista, una di Tessier, medico e una di Libri, storico.
Seguono alcune citazioni della Germain e alcune indicazioni biografiche degli autori delle lettere.
 
COMMENTO:
Il libro costituisce un semplice assaggio, che lascia, però, la bocca un po’ asciutta. Troppo scarne sono le notizie di Sophie Germain: il libro basta per intuirne la grandezza e l’originalità, ma non per gustarne fino in fondo l’impatto che essa ha avuto sui suoi contemporanei. Per quanto riguarda le lettere, manca un filo conduttore che faccia capire meglio il loro significato e che le possa collocare meglio nella vita della Germain. 
Rispetto alla biografia di Galois, il lavoro sulla Germain appare quindi scarno, povero. Si sarebbe potuto scrivere molto di più…
Pubblicato in Libri
Giovedì, 01 Agosto 2013 15:43

L'enigma dei numeri primi

TRAMA:
L’introduzione della dimostrazione segna il vero inizio della matematica: l’intuizione da sola non basta e non serve nemmeno la verifica caso per caso, che potrebbe essere svolta da un computer. Gauss, principe dei matematici, dà un senso pieno alla dimostrazione e trova una certa regolarità nei numeri primi stabilendo che i numeri primi inferiori a un certo numero N sono N/lnN. Legendre perfeziona questa formula e nasce un’aspra disputa tra i due, vinta da Gauss che aveva effettuato un’analisi teorica, nettamente superiore ai tentativi del rivale.
Nel novembre del 1859, Riemann pubblica un saggio, di sole dieci pagine, nelle note mensili dell’Accademia di Berlino: solo dieci pagine perché, essendo un grande perfezionista, voleva pubblicare solo dimostrazioni rigorose. Determina una formula che fornisce il numero esatto di primi non maggiori di N, ma non va oltre: fuggendo dall’esercito invasore nel 1866, Riemann muore in Italia a soli trentanove anni e la sua solerte governante distrugge molti dei suoi appunti inediti, prima che qualcuno riesca a fermarla. Fra le sue carte, la dimostrazione non è mai stata trovata e fino a oggi i matematici non sono stati in grado di replicarla.
Agli inizi del Novecento, Hilbert riporta al centro dell’attenzione l’ipotesi, con il suo discorso al Congresso Internazionale dei matematici, nel quale elenca una serie di ventitre problemi, ritenendoli la linfa vitale della matematica: fra di essi l’ipotesi di Riemann, che secondo lui avrebbe sicuramente aperto nuove vie.
Con la seconda guerra mondiale e l’avvento del nazismo, l’Europa perde la propria centralità e molti matematici trovano rifugio a Princeton: Siegel, Selberg, Erdős,… fanno importanti passi avanti ma non giungono a una dimostrazione completa dell’ipotesi. Turing avrebbe solo potuto trovare un eventuale errore di Riemann, con il computer che consente solo di valutare ogni singolo caso. Fino ad ora ha permesso di trovare che 300 milioni di zeri si trovano sulla retta, facendo vincere a Enrico Bombieri due bottiglie di ottimo bordeaux in una scommessa contro Don Zagier: trecento milioni di zeri non sono una dimostrazione, ma una gran massa di indizi.
Con l’avvento di Internet, la teoria dei numeri ha assunto un ruolo di primo piano nelle applicazioni, visto che la cifratura RSA (da Rivest – Shamir – Adleman), che salvaguarda gran parte delle transazioni che avvengono su Internet, è basata sulla scomposizione di numeri con un elevato numero di cifre. L’ipotesi di Riemann aiuterebbe a capire la distribuzione dei numeri primi e cambierebbe anche la scomposizione dei numeri molto grandi: per ora contribuisce “solo” ad arricchire questa “odissea intellettuale” che non ha ancora avuto un lieto fine.
 
COMMENTO:
Libro molto interessante, spiegato con estrema semplicità e chiarezza. L’ipotesi di Riemann è la protagonista di una storia della matematica ricca di vicende umane, che si apre con il pesce d’aprile di Bombieri a dimostrazione del fatto che anche nella matematica più seria c’è spazio per l’umorismo. 
Adatto anche per studenti delle superiori.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 14:26

Il disordine perfetto

TRAMA:
Cos’è la simmetria? Questa è la prima domanda cui Marcus du Sautoy cerca di dare una risposta: la simmetria indica qualcosa di speciale che il nostro cervello sembra programmato per cogliere. 
A partire dai tempi dei greci, Platone aveva cominciato uno studio sistematico dei solidi simmetrici che devono a lui il loro nome, considerandoli capaci di trascinare l’anima verso verità più profonde. I musulmani hanno proseguito questo studio, come dimostrato dal palazzo dell’Alhambra, nel quale sono presenti tutte le 17 simmetrie possibili. Per i musulmani, non è possibile raffigurare le persone, per questo motivo essi si sono concentrati su oggetti geometrici e la capacità di ripetere il motivo di una piastrella senza sosta e senza imprecisioni era segno di vera abilità. 
Mentre in Spagna si costruisce il palazzo dell’Alhambra, al Khwarizmi e Khayyam portano avanti i loro studi sulle equazioni, passando poi il testimone a Cardano e Tartaglia, che si contendono la soluzione delle equazioni di terzo grado. Abel, nella sua sfortunata e breve vita, dà un grande contributo allo studio delle equazioni e con Cauchy si ha l’evidenza del ruolo del linguaggio per comunicare i nuovi risultati: “Non lasciate che tocchi un libro di matematica o che scriva un solo numero prima di avere completato i suoi studi di letteratura”, disse Lagrange al padre di Cauchy, avvertendo l’imminenza di importanti cambiamenti nel mondo della matematica. 
All’indomani della Rivoluzione Francese, l’opera di Galois evidenzia finalmente il legame esistente fra le equazioni e la simmetria: Galois comprese che alla base del tentativo di risolvere le equazioni di quinto grado si nascondeva un problema più sottile, ovvero si rese conto che la chiave per rispondere a questo problema stava nelle simmetrie delle soluzioni dell’equazione.
La simmetria pervade ogni aspetto della quotidianità, pensiamo ad esempio alla musica: la trascrizione del Miserere da parte di Mozart (pezzo di 12 minuti) a soli 14 anni, è stata possibile solo cogliendo la struttura logica della composizione.
Tutte le simmetrie possibili sono state raggruppate nell’Atlas of finite groups, di Conway, Curtis, Norton, Parker e Wilson, ovvero in quello che l’autore definisce un viaggio record di 2000 anni attraverso la simmetria.
 
COMMENTO:
La storia della simmetria, la storia della soluzione delle equazioni, le ricerche di Marcus du Sautoy e la sua stessa vita si intrecciano in questo bellissimo libro, molto scorrevole e adatto anche a studenti delle superiori. 
Du Sautoy ci spiega cos’è la matematica e in cosa consiste il lavoro del matematico, coinvolgendoci con la descrizione dei convegni cui ha partecipato, delle collaborazioni in cui ha dato il suo contributo, dell’intricata rete di rapporti umani che si crea tra i matematici. 
Ma non si ferma qui, dato che la sua stessa vita è parte integrante del libro: ci racconta l’incontro con la moglie Shani, l’esperienza della fecondazione assistita e, infine, l’adozione delle gemelle guatemalteche Magaly e Ina.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 14:17

Il meridiano

TRAMA:
Il 23 giugno 1792, a Parigi due carrozze si apprestano a partire: a bordo della prima l’astronomo Pierre Méchain, accompagnato dal geografo Tranchot e diretta a sud; a bordo della seconda Jean-Baptiste Delambre, accompagnato da Bellet e diretta a nord. Obiettivo della missione la misurazione del meridiano tra Dunkerque e Barcellona, per predisporre una nuova unità di misura della lunghezza che, negli intenti della Commissione dei pesi e delle misure, non doveva dipendere da eventi mutevoli, ma essere legata a oggetti invariabili. In tal senso, si era scelta come unità di misura della lunghezza la decimilionesima parte del meridiano terrestre: i due astronomi avrebbero misurato una parte del meridiano, l’uno procedendo verso sud e l’altro verso nord e si sarebbero incontrati a Rodez, per poi far rientro a Parigi.
Fin da subito, i due astronomi incontrano problemi con i lasciapassare: grande è la diffidenza nei loro confronti, per la strana missione che è stata loro affidata, per le numerose lotte intestine che fanno seguito alla Rivoluzione e per gli attacchi provenienti dagli altri paesi europei.
Il 25 febbraio del 1793, Méchain si trova ospite del dottor Salva, suo ammiratore, a Montserrat. Qui, impegnato ad aiutare il suo gentile ospite a far funzionare una pompa, resta gravemente ferito. Ripresosi dall’incidente, dopo una lunga convalescenza, viene bloccato a Barcellona, da dove non solo non può far rientro in Francia a causa delle ostilità tra i due paesi, ma non può nemmeno spedire i propri risultati, che vengono scambiati per segreti militari scritti in codice. Durante la permanenza a Barcellona, Méchain ripete alcune misurazioni ed è in questo modo che trova un errore. Questo lo porta a interrogarsi su tutto il lavoro svolto fino a quel momento e a una profonda crisi.
Nel frattempo, a Parigi il Comitato di sorveglianza sembra convinto della sua migrazione all’estero e, per questo motivo, ne incarcera la moglie. Delambre è stato destituito dal suo incarico e le sue misurazioni interrotte: egli si ritira in un paese di campagna fino a quando non gli viene restituito il posto che occupava.
Méchain e Tranchot, finalmente liberi, raggiungono l’Italia, dove restano per circa un anno. Rientrati in Francia, hanno una discussione: Tranchot vorrebbe procedere più speditamente, partecipando attivamente alle misurazioni, per raggiungere quanto prima Delambre, Méchain si sente tradito e gli impone di andarsene. Nemmeno l’intervento della moglie, Thérèse, che lo raggiunge nel sud della Francia, riesce a rasserenarlo. 
Finalmente Delambre e Méchain si incontrano a Carcassonne e da lì proseguono per Parigi. Méchain si rifiuta di consegnare tutti i suoi appunti alla Commissione, ottenendo di presentare solamente un resoconto. 
Il 26 aprile del 1803 ottiene il permesso di lasciare di nuovo Parigi, per proseguire con nuove misurazioni del Meridiano, illudendosi di poter correggere il proprio errore, ma muore poco tempo dopo a seguito di un’epidemia.
Il figlio riporta in patria i suoi appunti e li consegna a Delambre, il quale ha modo così di rendersi conto dell’errore di Méchain, anche se si rifiuta di renderlo pubblico.
 
COMMENTO:
Il libro presenta con grande intensità la figura di Méchain, che ha avuto un ruolo tanto importante nell’errore commesso nella determinazione del metro. Le vicende personali dei due astronomi ben si inseriscono nelle vicende storiche che la Francia sta vivendo all’indomani della Rivoluzione ed il tutto è dosato con grande maestria da Guedj, che mostra di essersi molto appassionato alla vicenda. Una passione che trasmette anche al lettore.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 13:21

Zero o le cinque vite di Aémer

TRAMA:
3000 a.C. – Uruk, bassa Mesopotamia. Tanmuzzi, ricco pastore manda un vaso in dono ad Aémer, sacerdotessa dell’Amore. Al momento della consegna, il vaso viene rotto e Tanmuzzi, informato, decide di recarsi personalmente in visita a Uruk. Innamoratosi di Aémer, vivono per lunghe settimane un’intensa storia d’amore, ma benché la loro passione sia sempre viva, Tanmuzzi decide di andarsene: le sue giornate sono troppo vuote. Una notte, mentre Tanmuzzi sta ideando un sistema più astratto per rappresentare i numeri, gli uomini della montagna lo uccidono. Il suo fedele scriba Askum, decifrati i segni incisi in fretta da Tanmuzzi prima di morire, si accorge che “non si trattava più di una scrittura delle cose, ma di una scrittura delle parole”. Al termine del suo lavoro, Askum può portare ad Aémer il canto che Tanmuzzi ha composto per lei.
 
2000 a.C. – Ur. In un locale di Ur, Aémer lavora come kezertu, prostituta. Nelle sue giornate libere si incontra con Adappa, un giovane che studia per diventare scriba, perché le insegni a scrivere. Una sera, alla locanda arriva Unzu, nuovo responsabile dell’irrigazione per la regione di Ur, ubriaco e disperato perché la moglie non può dargli figli. Si ritrovano così: Aémer e Unzu un tempo erano innamorati, ma i genitori di lui avevano escogitato uno stratagemma per allontanarli. Unzu sostituisce Adappa nell’insegnarle a scrivere e spiega ad Aémer il nuovo metodo di rappresentazione dei numeri. Dopo una lunga frequentazione, Unzu le propone di sposarlo, ma Aémer preferisce il ruolo di amante: “la nostra vera opportunità è che possiamo amarci di un amore libero”, dice.
 
500 a.C. – Babilonia. Rientrata da poco a Babilonia, Aémer, oniromante (ovvero interpretatrice di sogni), incontra il fratello Hattâru, da cui era stata allontanata anni prima. Hattâru, che passa il suo tempo nell’osservatorio centrale di Babilonia, sopra la ziggurat più famosa di tutta la regione, scopre che il padre dell’amante della sorella è responsabile dell’uccisione dei loro genitori e della loro separazione da piccoli, perciò quando lo incontra tenta di ucciderlo. Aémer non può più continuare la sua storia d’amore e alla fine si ritira nell’osservatorio per aiutare il fratello nel suo lavoro. Mentre lo zero sta facendo la sua comparsa, in forma di una colonna vuota nella scrittura dei numeri, Aémer e Hattâru sono sempre più vicini e decidono di dar vita al loro amore, anche se la legge “aveva inserito una colonna vuota che impediva loro di colmare lo spazio che li separava e li manteneva fuori portata l’uno per l’altra”.
 
IX sec. d.C. – Baghdad. Una giovane donna, di nome Aémer, sta rubando dei libri e Mohand, alla ricerca di opere scientifiche, si accorge di quello che lei sta facendo e le si avvicina per chiedergliene il motivo. Parlando, Mohand le racconta di essere alla ricerca di un libro raro, che spazza via gran parte dell’ambiguità nella scrittura dei numeri, dando importanza al posto occupato dai singoli numeri e, proprio mentre Aémer lo sta rubando, le guardie la scoprono e la portano in prigione. Ma il Sultano aveva ordinato che il primo ladro catturato durante l’operazione nata per porre fine ai furti nel suk fosse graziato e Aémer può tornare alla sua vita e donare il libro a Mohand. Aémer decide poi di accompagnare Al-Sanuba, il padrone che le ha restituito la libertà anni prima, in un viaggio alla scoperta del mare. Durante il viaggio, vengono rapiti dai predoni hindi e restano nel loro villaggio per circa tre anni. Panca, il capo, sembra essersi affezionato ad Aémer, ma quando si rende conto che non potrà mai essere ricambiato, la lascia libera. Panca e il suo popolo vengono catturati dal Sultano e, grazie all’intervento di Aémer e Mohand, almeno il popolo viene liberato, perché in cambio della sua libertà, Panca ha spiegato il simbolo dello zero a Mohand. Aémer assiste all’esecuzione di Panca e poi segue la colonna in movimento, abbandonando Baghdad.
 
Primavera 2003 – Baghdad. Aémer, archeologa in Iraq durante la seconda guerra del golfo, viene ritrovata da Obeid, un partigiano irakeno, in fondo a un cratere scavato da un mortaio. Si recano insieme a Uruk, dove le loro strade si separano. Aémer incontra i soldati alleati che le rilasciano il salvacondotto per raggiungere Uruk, dove trova il sito archeologico deserto. Obeid, ritrovata la madre dopo tredici anni, parte alla ricerca di Aémer e insieme si recano a Ur, dove lei gli dice di essere incinta.
 
COMMENTO:
Caratteristica principale del libro è il fatto che i numeri vengono presentati come una metafora della vita, mentre lo zero, con lo scorrere dei secoli, si inserisce nella quotidianità. Il libro è composto da cinque diverse storie, che hanno come protagonisti l’amore, i numeri e Aémer, di volta in volta archeologa, sacerdotessa dell’amore, prostituta, oniromante, ladra e danzatrice. Apparentemente slegate, le storie fanno da sfondo all’evoluzione della scrittura dei numeri e alla comparsa dello zero.
Adatto anche a chi non ha preparazione matematica, il libro può appassionare chiunque, offrendo uno spaccato della storia e della cultura dell’Iraq.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 13:18

Com'è bella la matematica

TRAMA:
Le lettere sono indirizzate a Meg e seguono il suo percorso scolastico, dalle scuole superiori fino a un incarico universitario. La matematica delle superiori non ha molto a che fare con la matematica di più alto livello, ma è necessaria per potervi accedere, perché essa “richiede una grande quantità di nozioni fondamentali e di tecnica”. E nonostante la ricerca continui a progredire, esistono ambiti in continua espansione: “lo spazio per la ricerca è così sconfinato, che sarà difficile stabilire da dove partire o quale direzione prendere”. La matematica fugge la rigidità, richiede grande immaginazione, fa sorgere sempre nuove domande con il progredire della conoscenza: “se fosse un edificio sarebbe una piramide costruita al contrario, con una base molto stretta e ogni piano più ampio del sottostante. Più l’edificio è alto, più c’è spazio per costruire”. 
“Incontriamo dei matematici ogni giorno e in ogni luogo, ma raramente ce ne rendiamo conto”: la matematica permette di vedere l’universo in modo diverso, aprendo gli occhi di chi la studia, ma tutto questo non è possibile senza insegnanti che la presentino “come una disciplina multiforme, creativa, originale e sempre nuova”.
All’inizio del percorso universitario, con il timore del nuovo cammino che le si prospetta, Stewart offre a Meg “un’idea cui aggrapparsi nei momenti più difficili”: le parla delle proprie passeggiate in Texas e della matematica che studia le simmetrie della natura. Come hanno fatto i matematici a pensare quelle cose? Qual è il metodo di studio più adeguato? Rifacendosi all’esperienza di Poincaré, Stewart propone un metodo di studio, in base al quale è meglio non soffermarsi troppo sulle cose che non si capiscono, perché anche ciò che in un primo momento non è chiaro può sempre chiarirsi in seguito. 
E le dimostrazioni? Nella vita universitaria, a differenza delle superiori, le dimostrazioni sono onnipresenti e si fatica a capire l’accanimento dei matematici per questo aspetto della disciplina, ma “I matematici hanno bisogno delle dimostrazioni per ragioni di onestà”. I computer, al contrario di quanto si è portati a credere, non aiutano nella dimostrazione, se non laddove si devono enumerare tutti i casi possibili. La dimostrazione è come una narrazione: le dimostrazioni più difficili sono il “Guerra e pace” della matematica.
Stewart prosegue suggerendo a Meg il metodo migliore per diventare un matematico famoso, mettendola in guardia dalle difficoltà dei problemi più famosi, descrivendo i gradini della carriera, indicandole come scegliere il proprio supervisore.
Le propone la scelta, che le si presenterà al termine degli studi universitari, fra la matematica pura e quella applicata e, sostenendo che ormai è una distinzione sterile, senza senso, racconta di come sia sorta (risale solo agli anni ’60) e sottolinea come i due aspetti non possano esistere separatamente: alla matematica pura mancherebbe “la vera forza creativa della matematica [che] sta nei suoi legami con il mondo naturale”, ma anche quella applicata “ha bisogno di diventare generale e astratta, altrimenti non farebbe nessun progresso”. 
Raccomanda a Meg di leggere, di tenere “la mente sveglia e le antenne dritte”, per lasciare spazio alle nuove idee originali che potranno aprire la via ad una nuova ricerca. Parlandole della comunità matematica, della necessità di un respiro internazionale, per una disciplina che solo apparentemente si svolge nel chiuso di uno studio e in solitudine, la invita a aprire “bene le orecchie al momento del caffé”, per approfittare della collaborazione che, per quanto difficoltosa, è l’anima della ricerca. 
Nell’ultima lettera, Stewart affronta il discorso dell’Universo, del ruolo di Dio all’interno di esso e spiega a Meg che se Dio può essere considerato un matematico “ogni tanto ci permette di sbirciare da dietro le sue spalle”.
 
COMMENTO:
Come dichiara lo stesso autore, il testo è un “tentativo di aggiornare alcune parti del libro di Hardy”, Apologia di un matematico. E in effetti in molte pagine sembra che l’autore stia dibattendo con Hardy, come quando spiega il motivo per cui non ha più senso contrapporre la matematica pura a quella applicata.
Il libro è ottimo sia per gli insegnanti, sono numerosi e costruttivi gli spunti offerti e le critiche presentate, che per gli studenti, grazie ai suggerimenti per trovare il proprio metodo di studio. Offre un’ottima descrizione della matematica, attraverso semplici metafore, comprensibili per tutti. Più complessa è la seconda parte, quando, in conseguenza all’approfondirsi degli studi di Meg, l’autore si addentra nei particolari del mondo matematico, non tralasciando di descrivere, con una buona dose di ironia, la vita accademica e le piccole e grandi manie di famosi matematici. 
Interessanti le digressioni autobiografiche, che, inserendosi nel ritmo della narrazione, danno un tono di leggerezza agli argomenti trattati.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:52

La matematica da Pitagora a Newton

TRAMA:
I NUMERI – L’introduzione delle cifre arabe è un fatto relativamente recente, ma ha cambiato completamente il nostro modo di operare con la matematica: basti pensare alla difficoltà di svolgere anche la più semplice operazione aritmetica con le cifre romane. Le cifre arabe non si affermarono senza incontrare ostacoli: basti pensare che ci vollero due secoli abbondanti perché la nuova numerazione si diffondesse.
App. 1: La numerazione degli antichi romani
App. 2: La regola turca
App. 3: La regola di Pitagora per calcolare il quadrato di un numero
App. 4: Applichiamo la regola di Pitagora per misurare gli spazi percorsi da un sasso che lasciamo cadere dall’alto
App. 5: Numerazioni in basi diverse dal dieci
App. 6: La numerazione “in base due”, ovvero: bastano le due cifre 0 e 1, per scrivere un numero qualunque
I TRIANGOLI – La geometria è stata la prima vera scienza costruita dall’uomo. I greci la portarono ad un ottimo livello, basti pensare alla misurazione della piramide di Cheope da parte di Talete, e alla dimostrazione del teorema di Pitagora.
App. 7: Non credere a quello che vedi! Ovvero: la moltiplicazione dei quadrati
LE MISURE – In geometria, conta la misura. Per tecnici e scienziati, è possibile misurare qualsiasi cosa, ma non per il matematico. Basta pensare alla diagonale del quadrato di lato 1 m, o alla lunghezza della circonferenza. Per determinare, con precisione, il rapporto tra la misura della circonferenza e quella del suo diametro, fu Archimede ad avere l’idea geniale, introducendo il metodo infinitesimale, riscoperto ben milleottocentocinquanta anni dopo.
App. 8: Nessuna frazione ha per quadrato due
App. 9: La scodella di Luca Valerio
App. 10: Un’area misurata da Galileo con la bilancia, da Torricelli con la mente 
I SIMBOLI E I NUOVI NUMERI – La nascita dell’algebra porta all’introduzione di nuovi simboli, le lettere variabili, e nuovi numeri, come i numeri negativi, considerati “assurdi” per molto tempo, o gli irrazionali.
App. 11: Calcolo letterale: simboli e regole
App. 12: “Pensa un numero…” “L’ho pensato”
App. 13: Una porta mezza-chiusa non è una porta mezza-aperta
App. 14: Calcolo di (a+b)^3 con l’algebra geometrica
App. 15: uno è uguale a due, ovvero l’operazione proibita
LA GEOMETRIA DIVENTA ALGEBRA – Con i diagrammi cartesiani, ormai diffusi e usati in ogni ambito della nostra società, geometria e algebra si incontrano. Si tratta di un’enorme scoperta, tanto da poter essere considerata “uno dei principali punti di partenza di tutta la scienza moderna”.
App. 16: La convenzione dei segni nello spazio
App. 17: Le equazioni della parabola e della iperbole equilatera
FUNZIONI, DERIVATE, INTEGRALI – Leibniz e Newton arrivarono alle stesse idee del calcolo infinitesimale in forma diversa, ma nello stesso momento: i tempi erano ormai maturi. Con il calcolo differenziale, si può determinare la velocità istantanea e risolvere le equazioni del moto. “Questa è l’ultima grande idea semplice e geniale della nostra storia”.
App. 18: Alcuni simboli che si impiegano per la derivata e l’integrale (definito)
App. 19: Risposte a dubbi
 
COMMENTO:
“Il libro è deliberatamente breve e facile, in quanto si rivolge a lettori quasi privi di basi matematiche, e in particolare ai lettori più giovani.” Quanto viene espresso nell’introduzione di Giorgio Israel basta per commentare questa veloce esposizione matematica. Ma non bisogna dimenticare che, per quanto la trattazione sia semplice, “Per comprendere la matematica occorre far funzionare il cervello, e questo costa sempre un certo sforzo”. È l’autore stesso a metterci in guardia nella sua introduzione.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:50

I pantaloni di Pitagora

TRAMA:
Il VI secolo a.C. fu un secolo prodigioso per l’Occidente, perché avvenne il passaggio da una spiegazione mitologica dell’universo alla ricerca di una spiegazione scientifica. Per Pitagora, questa spiegazione era data dai numeri, Tutto è numero. Cominciò così l’emarginazione delle donne: la matematica era un’attività essenzialmente maschile, le donne dovevano dimenticare la loro natura femminile per far parte delle comunità pitagoriche. 
Con l’avvento dell’era cristiana, le donne furono definitivamente estromesse dalla conoscenza: nel Tardo Medioevo, potevano legittimare le loro parole solo sostenendo che la fonte della loro creatività era Dio stesso. Nel Rinascimento, il clima della cultura europea cominciò a cambiare e le donne poterono permettersi di sfidare l’egemonia maschile in campo intellettuale: nell’astronomia vennero tollerate nella misura in cui aiutavano gli uomini, come Sophie Brahe e Maria Winkelmann. Con la sconfitta della magia, dopo il Concilio di Trento, la natura rimase dominio dell’uomo. La filosofia naturale di Newton diventò l’emblema di un periodo storico nel quale le donne non avevano che un ruolo marginale. Madame de Chatelet non era considerata, Laura Bassi nutriva una propria indipendenza di pensiero, ma non diventò mai una docente a tutti gli effetti, Maria Gaetana Agnesi non poté ritirarsi dalla vita mondana per dedicarsi alla fisica.
Nel 1800, la scienza proseguì con un’escalation ormai inarrestabile: Carnot, Faraday, Maxwell, … mentre le donne erano ai margini. Comparirono le prime università femminili, ma non furono che un modo per rinchiudere le donne nel loro mondo. Harriet Brooks ne è la dimostrazione: dovette scegliere tra insegnamento e famiglia. Maria Sklodowska Curie, invece, riuscì a ottenere un proprio ruolo, ma per tutta la vita fu perseguitata dall’insinuazione che la parte creativa della ricerca fosse stata tutta opera del marito. 
Ancora nel XX secolo, la donna europea non poteva accedere ai livelli superiori dell’istruzione accademica: Emmy Noether diventò presto uno dei più grandi matematici del secolo, ma perse anni preziosi solo per il fatto di essere donna e fu ammessa all’università come “uditrice”; Lise Meitner dovette lavorare alla fisica negli scantinati e alla fine venne ignorata nell’assegnazione del Nobel (venne insignito Hahn, che aveva collaborato con lei).
La discriminazione dei sessi non è più consentita dalla legge, ma continua a prevalere negli ambienti scientifici, come dimostrato dalla vicenda di Chien-Hiung Wu, scienziata cinese delle particelle, esclusa dall’assegnazione del Nobel. 
Anche se la situazione è migliorata dagli anni ’70 ad oggi, la fisica rimane dominio maschile ed è l’ambito della scienza in cui la presenza femminile è più scarsa. La conferma arriva dal fatto che dal giorno della sua istituzione, nel 1901, ad oggi, più di quattrocento uomini hanno vinto il Premio Nobel per la ricerca scientifica, ma solo nove donne hanno avuto questo onore.
 
COMMENTO:
La lettura del testo è scorrevole e coinvolgente. Oltre ad offrire un ottimo excursus nella storia della fisica, l’autrice, ed è questo il fine principale, presenta la situazione della donna, il suo impegno nella ricerca scientifica, la sua vita ai margini. La storia della fisica, la storia fatta dagli uomini, diventa solo uno sfondo sul quale si svolge la lotta quotidiana anche di grandi scienziate, costrette a misurarsi ogni giorno con la discriminazione. 
Presentato in una classe terza delle superiori, il libro ha suscitato notevole interesse, ha fatto nascere nuovi interrogativi, ha stimolato la sete di conoscenza e ha lasciato un segno profondo, soprattutto nel momento in cui è stata presentata la figura di Marie Curie.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:09

La misura di tutte le cose

TRAMA*:
Sul finire del XVIII secolo, centinaia di Cahier de doléances, famosi documenti di protesta, reclamavano l’armonizzazione del sistema di pesi e misure a livello nazionale: un complesso di circa ottocento parametri, radicati nelle usanze, ostacolava i commerci e incoraggiava le frodi. Perché il nuovo sistema potesse essere universale, doveva essere inconfutabile, perciò doveva essere tratto dalla natura. Il metro sarebbe stato la decimilionesima parte del tratto di meridiano terrestre misurato tra Dunkerque e Barcellona. Inghilterra e America si dissociarono: perché la natura doveva passare per forza dalla Francia? Dopo anni di discussioni, nell’estate del 1792 partì la missione per la misura del meridiano. Furono incaricati Delambre e Méchain.
Delambre era nato nel 1749 da commercianti di tessuti, ad Amiens. Méchain, figlio di un imbianchino, era nato nel 1744 a Laon. Il primo fu incaricato di misurare la parte settentrionale del tragitto compreso fra Dunkerque e Parigi, il secondo si occupò del tratto meridionale. Entrambi erano esperti in geodesia.
Delambre si scontrò con i rivoluzionari che vedevano in lui i pregi tanto osteggiati dell’Ancien Régime. Méchain fu immobilizzato per mesi da un infortunio e in seguito partì dalla Spagna con un grande dubbio, visto che due misurazioni non coincidevano. Nel giugno del 1794, salpò per Pisa. Poteva tornare a Parigi ma si trattenne a Genova, temendo l’instabilità politica. Delambre procedeva spedito sotto i cieli del settentrione.
Con l’avvento di Napoleone, sostenitore della loro causa e membro dell’Accademia delle scienze, le cose migliorarono. Il 1° luglio 1794, il sistema metrico decimale, basato su una stima provvisoria, entrò in vigore, anche se la gente era restia ad adeguarsi. 
Nel frattempo, l’autostima di Méchain era ormai minata: non riusciva a giungere a capo dei dati di Barcellona. Temeva di confidarsi, ma non poteva portare da solo il peso di un simile errore. Le energie fisiche scemavano e in tre mesi era arrivato soltanto a Carcassonne. Delambre, tra la primavera e l’estate del 1797, eseguiva le misurazioni da Evaux a Rodez, il punto d’incontro stabilito: Méchain marciva a Pradelles, vaneggiando di tornare a Barcellona per ulteriori verifiche. Per non pregiudicare la missione, Delambre si rivolse alla signora Méchain. La moglie dell’astronomo, senza preannunciare la partenza, raggiunse il marito che non vedeva da sei anni. Nel luglio, quando lo lasciò, le stazioni di Rodez, Rieupeyroux e Lagaste erano completate: gli restavano ancora pochi tratti da misurare. Era possibile congiungersi a Delambre in tempo per la conferenza internazionale di Parigi, in cui gli scienziati delle nazioni amiche, Olanda, Italia, Danimarca, Spagna e Svizzera, avrebbero verificato il lavoro per dare l’imprimatur.
Nel novembre del 1798, Méchaine e Delambre furono accolti dalla capitale come trionfatori, ma alla fine del gennaio 1799, non avevano ancora presentato i dati. Il 2 febbraio, Delambre cessò di coprire il collega e presentò il suo lavoro, che venne approvato. Laplace diede dieci giorni a Méchain, il quale ottenne di non presentare i suoi diari, giustificandosi per il disordine e offrì solo i dati sintetici. Il 22 marzo si presentò alla Commissione e ottenne l’approvazione.
La missione geodetica confermò che la terra è schiacciata, il raggio si accorcia dall’equatore al polo un centocinquantesimo, metà del valore calcolato in precedenza, inoltre i meridiani presentano un andamento irregolare. La missione non si proponeva scoperte scientifiche, perciò fu un exploit.
Il metro fu fissato una volta per tutte a 443,296 linee, contro le 443,44 di quello provvisorio. Come avrebbero rilevato i satelliti, il meridiano tra Dunkerque e Barcellona si estende per 10.002.290 metri: il metro doveva essere due millimetri più lungo. Ciò che conta è il valore convenzionale; oggi solo gli Stati Uniti, la Liberia e Myanmar ne sono fuori. Il chilo fu determinato di conseguenza come il peso di un decimetro cubo di acqua distillata, alla temperatura di 4°C, a livello del mare e a 45° di latitudine. 
L’errore di Méchain rientra nell’approssimazione necessaria anche alla scienza, ma Méchain fu vittima delle sue ossessioni: si fece affidare una missione per estendere la misurazione del meridiano a sud di Barcellona e morì, a causa della malaria, il 20 settembre 1804. Delambre poté finalmente guardare tutte le carte del collega. Si rese conto dell’errore e ne diede notizia, sia pure velatamente, nella Base, l’opera in tre tomi di resoconto della missione metrica che lo occupò quasi fino alla morte, avvenuta serenamente il 19 agosto 1822.
 
COMMENTO:
Un libro di non facile lettura e a tratti un po' noioso, vista la ricchezza di notizie, riguardanti l’evolversi della Rivoluzione Francese. Importante l’ultima parte del libro, l’ultimo capitolo in particolare, contenente alcuni commenti dell’autore, a proposito dell’evoluzione della scienza e del suo rapporto con gli errori.
 
*Trama tratta dall'articolo "Storia del metro" di Antonio Armano, riportato in "La macchina del tempo" Anno 3, n.11 - Novembre 2002, pag. 31/34
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:06

La matematica del Novecento

TRAMA:
La trattazione della matematica moderna non è cosa facile, a causa della sua notevole astrazione, dell’esplosione produttiva che ha investito il XX secolo e della sua suddivisione in sottodiscipline sempre più numerose. La scelta di Odifreddi nella trattazione è stata quella di dare rilievo ai vincitori della medaglia Fields o del premio Wolf e ai problemi di Hilbert, ma questi non esauriscono le numerose scoperte del XX secolo.
I FONDAMENTI – La matematica porta alla luce oggetti e concetti che, al loro primo apparire, sono inusuali e non familiari. Un atteggiamento tipico, fin dai tempi dei Greci, è stato il tentativo di limitare sorpresa e disagio il più possibile, scaricando il peso dell’edificio della matematica su solide fondamenta. Nel secolo VI a.C. i Pitagorici posero a fondamento della matematica l’aritmetica dei numeri interi e razionali, poi fu la volta della geometria e successivamente dell’analisi. Nel secolo XIX il cerchio si chiuse e l’analisi fu ridotta a sua volta all’aritmetica. Ma il processo di costruzione e decostruzione non si fermò qui. La caratteristica essenziale delle nuove fondazioni è che esse si basano non più sugli oggetti classici della matematica, ma su concetti completamente nuovi.
Negli anni ’20, gli insiemi sembrarono un buon fondamento per la matematica; negli anni ’40, un gruppo di matematici francesi, Bourbaki, trovò una soluzione in un’analisi non più logica ma strutturale; negli anni ’60, si arriva al concetto di categoria, che contiene come casi particolari sia gli insiemi che le strutture. Nessuno dei tre approcci è però soddisfacente dal punto di vista degli informatici, che hanno trovato una fondazione alternativa nel Lambda Calcolo proposto da Church. 
MATEMATICA PURA – Per millenni la storia della matematica è stata la storia dei progressi nella conoscenza di entità numeriche e geometriche. Negli ultimi secoli invece e soprattutto nel XX sec. sono venute alla luce nuove e disparate entità, che hanno acquistato una loro indipendenza, e ispirato quella che è stata chiamata una nuova età dell’oro della matematica. Se, da un lato, la matematica moderna è dunque il prodotto di uno sviluppo che affonda le sue radici in problematiche concrete e classiche, dall’altro essa è anche la testimonianza di un’attività che trova la sua espressione in costruzioni astratte e contemporanee.
MATEMATICA APPLICATA – Le applicazioni della matematica hanno costituito una caratteristica costante della sua storia e ciascuna branca della matematica classica è stata, ai suoi inizi, stimolata da problemi pratici. La matematica del secolo XX in questo non fa eccezione. Alcune di queste motivazioni derivano da aree scientifiche la cui fertilità è sperimentata, quali la fisica; altre motivazioni derivano invece da aree che solo nel secolo XX sono diventate scientifiche, come l’economia e la biologia.
MATEMATICA AL CALCOLATORE – Il calcolatore sta cambiando sostanzialmente la vita quotidiana, non solo dell’uomo comune, ma anche del matematico. 
La prima applicazione matematica della nuova macchina fu, naturalmente, l’utilizzo dei suoi poteri computazionali. È però nella matematica applicata che gli usi del calcolatore stanno provocando gli effetti più visibili. L’utilizzo del calcolatore ha permesso di risolvere lo studio dei sistemi dinamici, portando alla nascita della teoria del caos, ma non si possono certo tacere gli sviluppi della grafica computerizzata: con l’ausilio visivo, sono state scoperte nuove superfici e le immagini più note sono quelle dei frattali. 
PROBLEMI INSOLUTI – La matematica è sostanzialmente un’attività di proposta e di soluzione di problemi e la loro scorta è inesauribile, anche perché le soluzioni ne pongono spesso di nuovi. I matematici ritengono comunque che i problemi che essi si pongono non soltanto siano risolubili, ma anche che saranno, prima o poi, effettivamente risolti. Una soluzione accettabile di un problema matematico può essere anche una dimostrazione della sua insolubilità. Naturalmente, soluzioni negative punteggiano l’intera storia della matematica, ma è stato nel secolo XX che il fenomeno ha raggiunto massa critica, anche grazie alla sua chiarificazione attraverso il teorema di Gödel.
 
COMMENTO:
Libro interessante, anche se non di facile lettura, soprattutto se non si ha una buona preparazione in matematica. Sarebbe bene seguire l'indicazione dell'autore, che suggerisce di leggere il libro due volte: in effetti, con una seconda lettura, è possibile ottenere una migliore visione d'insieme e capire i collegamenti che vengono fatti. Inoltre, pregevole il fatto che il libro si presti ad una lettura non necessariamente lineare: si può infatti scegliere di leggere il libro solamente "piluccando" quelli che sembrano i paragrafi più interessanti. 
Su tutto, vorrei ricordare l'ottima prefazione di Gian Carlo Rota, interessante e divertente, che offre uno spaccato della matematica un po' diverso da quello cui ci hanno abituato a scuola.
Pubblicato in Libri
Pagina 7 di 8