Visualizza articoli per tag: fisica

Lunedì, 19 Agosto 2013 18:44

Il metodo sperimentale

Perché la fisica? Come si sviluppa la fisica? Quali sono le fasi del metodo sperimentale?

 

BIBLIOGRAFIA

Eirik Newth, Breve storia della scienza, Salani Editore, Milano, 1998
Antonino Zichichi, Galilei divin uomo, il Saggiatore, Milano, 2001
Ugo Amaldi, La fisica per i licei scientifici, Zanichelli, Bologna, 1997, vol.1

Pubblicato in Schemi e riassunti
Etichettato sotto
Martedì, 06 Agosto 2013 08:12

Sul limitare della fisica

TRAMA:

L’autore, Roberto Fieschi, esplora il legame della fisica con le altre scienze, ma parte dalla bellezza di questa scienza, così difficile da cogliere, visto il suo complesso linguaggio.

La fisica cerca spiegazioni causali a fenomeni naturali ed è una conoscenza sempre in divenire. Fieschi esordisce esaminando il rapporto tra tecnologia e fisica: da un lato, la fisica apre la strada alla tecnologia, come dimostrano la scoperta della radiazione cosmica di fondo, la scoperta di Kapitsa del comportamento anomalo dell’elio a basse temperature e la scoperta dell’elettrone, dovuta alla tecnica del vuoto. Per contro, la tecnologia permette il progresso della fisica: per secoli, la tecnica ha preceduto la scienza, come dimostrato dall’industria tessile e dagli sviluppi della macchina a vapore. Solo nella seconda metà dell’Ottocento lo studio dei fenomeni elettrici ha cambiato le cose: le scoperte teoriche sono diventate il fondamento delle telecomunicazioni e senza lo sviluppo della chimica, non ci sarebbero stati i reattori nucleari.

Nella seconda parte del libro, Fieschi parla del rapporto della fisica con le altre branche della scienza: comincia con l’astrofisica e con i suoi nuovi e potenti strumenti di indagine, procede con la geofisica, che impiega le tecniche e i metodi della fisica per studiare i fenomeni terrestri e che grazie alla radioattività ha potuto determinare in modo più preciso l’età della Terra, studiandone anche la deriva dei continenti. Numerosi sono i fisici che hanno dato importanti contributi alla biofisica e alla genetica: Mendel, Schrödinger, Gamow, Delbrück e Dulbecco, appassionato di fisica fin dall’adolescenza. Nel campo della medicina, la fisica viene applicata sia in ambito diagnostico che per la terapia: raggi X, TAC, risonanza magnetica, PET, ecografia e ultrasuoni sono le tecniche che le scoperte fisiche hanno messo a disposizione della medicina. Non solo le nuove tecniche, ma anche i materiali, sconosciuti fino a duecento anni fa, hanno cambiato il nostro mondo: grazie a solide conoscenze scientifiche, abbiamo a disposizione numerosi e nuovi materiali.

Matematica era la mente di von Neumann – che però ha dato contributi di altissimo livello anche alla fisica – che realizzò il primo calcolatore nel 1944, ma fisico fu l’inventore del World Wide Web, Berners-Lee, previsto in un protocollo redatto nel 1989 al CERN di Ginevra, in collaborazione con Cailliau. La fisica ha un ruolo centrale anche nell’economia, visto che la capacità di elaborare modelli, l’attitudine a manipolare quantità di dati e l’abilità con gli strumenti informatici, ha portato a introdurre il termine “econofisica”.

Parte della storia della fisica è occupata dal capitolo riguardante il rapporto tra la fisica e gli armamenti, visto che molti dei progressi della fisica sono avvenuti per realizzare nuove armi: per quanto l’osservazione e la ricerca delle leggi che regolano la natura dovrebbero essere indipendenti dalle convinzioni dello scienziato, capita che egli sia spesso influenzato dal mondo in cui vive, come dimostrano i numerosi esempi della Germania nazista oppure la biologia proposta dal sovietico Lysenko. Paradossalmente, spesso lo scienziato sceglie di contribuire alla realizzazione di un’arma micidiale per allontanare il rischio di una guerra, oltre che per la ricerca del successo e del prestigio, come è successo ai fisici che hanno partecipato al Progetto Manhattan. Non dimentichiamo che gli scienziati non hanno solo l’amore per la ricerca in quanto accesso alla conoscenza: le dispute per la priorità delle scoperte e le polemiche accese in passato sono una dimostrazione di quanto la gloria sia una delle molle per accedere alla conoscenza.

Purtroppo, nonostante il progredire della scienza, la superstizione sembra dominare la nostra società e la razionalità viene vinta dagli oroscopi. Eppure anche la scienza non è solo dominio della razionalità: lo scienziato viene coinvolto dall’entusiasmo della scoperta, per quanto sappia che servono conferme e ulteriori prove e Galilei, in tal senso, ribadisce che la fiducia nella ragione umana deve essere illuminata dalla consapevolezza dei propri limiti. 

 

COMMENTO:

Il libro di Roberto Fieschi ci offre una panoramica sul mondo della fisica, attraverso le riflessioni maturate in anni di dedizione alla ricerca e all’insegnamento. Le informazioni fornite sono esposte con chiarezza e mantengono sempre desta l’attenzione nel lettore: forse i capitoli brevi, forse perché tutto ciò di cui si parla non è solo raccontato in prima persona, ma anche vissuto in prima persona, la lettura prosegue speditamente. Pur riconoscendo alla fisica il ruolo essenziale svolto nello sviluppo anche di altri settori della scienza, l’autore non può che affermare la propria consapevolezza che in futuro le scoperte più importanti verranno dalla biofisica e dalle neuroscienze: proprio per questo motivo la fisica costituisce il fil rouge dell’esposizione, ma il testo può essere considerato una carrellata di tutte le scienze studiate attualmente.

Pubblicato in Libri
Etichettato sotto
Martedì, 06 Agosto 2013 08:02

Fisica, delitti e digressioni

TRAMA: 
Domenico Signorelli, come capita spesso agli insegnanti di matematica e fisica, ha cercato un modo alternativo di spiegare la fisica e, ispirato dal libro “Sherlock Holmes e i misteri della scienza” di Colin Bruce, ha sfruttato l’idea di risolvere dei casi polizieschi attraverso importanti fenomeni scientifici. Ecco quindi che la caduta dei gravi, la portata di un fluido, la legge fondamentale della termologia, l’ottica, l’acustica e l’elettromagnetismo sono la chiave che il professor Salviati, coinvolto dal commissario Borsari, utilizza per risolvere i casi più intricati. “Salviati incarna un docente di matematica e fisica che, profondamente innamorato del suo lavoro, vive immerso in una sorta di estasi intellettuale; Borsari è un commissario di polizia che nell’indagare su crimini e delitti si avvale delle conoscenze scientifiche del professore.”
Per poter gustare questi sette racconti, dobbiamo raccogliere la sfida di Signorelli e sopportare le poche formule che compaiono nel libro: “I calcoli sono svolti passo dopo passo e il modo in cui il professor Salviati cerca di spiegarli al commissario è molto graduale” e paradossalmente – ma forse si tratta di un paradosso che chi insegna matematica non può cogliere – con le formule tutto è più chiaro. Gli argomenti trattati sono introdotti o commentati da interessanti riflessioni/digressioni, attraverso le quali l’autore ci espone la sua idea della fisica. Dalla storia di Galilei che studia la caduta dei gravi, si procede riflettendo sul particolare sguardo con il quale gli scienziati leggono la realtà, vedendo ciò che è nascosto alla maggior parte della gente. Signorelli affronta anche il confronto tra le culture scientifica e umanistica, da sempre considerate agli antipodi e nella religione vede una limitazione delle nostre conoscenze. Solo la logica può difenderci dall’errore e aiutarci a dare una risposta ai nostri dubbi, necessari per mettere in discussione credenze ritenute incontestabili e per arrivare alla verità.
L’elenco dei capitoli ci dà l’idea di quali siano gli argomenti trattati nel testo:
- “Una grave leggerezza”: un omicidio camuffato da incidente, che il professor Salviati smaschera grazie al moto di caduta dei gravi.
- “Un dettaglio di grande portata”: il professor Salviati ci spiega il concetto di portata e, grazie alla pioggia, determina senza errori l’orario dell’aggressione, spiegando cosa è avvenuto realmente.
- “Un ardente desiderio di esattezza”: grazie alla termologia, il professor Salviati determina la quantità di alcol utilizzata da un ladro per incendiare le prove, permettendo a Borsari di identificare il colpevole.
- “Un’acuta riflessione”:le leggi di riflessione dell’ottica fanno luce sull’omicidio di Ugo Sarti, ucciso con un colpo di fucile esploso dall’esterno del suo ufficio.
- “Un silenzio assordante”: quest’ossimoro ci riporta alle leggi che regolano l’acustica, che permettono al professor Salviati di smascherare un omicidio che anni prima era stato considerato un suicidio.
- “Un’altezza che dura un istante” ritorna sulla caduta dei gravi e impedisce la fuga di un uomo colpevole di un grave atto di sabotaggio, sorpreso dai due protagonisti.
- “Un’idea illuminata”: le conoscenze del professor Salviati non sono solo teoriche e, grazie all’elettromagnetismo, costruisce una torcia con la quale trovare l’unica traccia lasciata da un ladro che li ha sequestrati.
 
.
 
COMMENTO:
Un libro alla portata di tutti, semplice ma non banale. La spiegazione di Signorelli è chiara e si può seguire senza fatica. In ogni caso, l’autore ci avverte già nell’introduzione che ci sarà richiesto un po’ di impegno, perché non si può acquisire conoscenza senza fare fatica. Si tratta però di una fatica ampiamente ripagata dalla comprensione, che ci permette di guardare la realtà con occhi diversi, come dimostra la soluzione dei sette delitti descritti.
Pubblicato in Libri
Etichettato sotto
TRAMA: 
Nel centocinquantesimo anniversario dell’Unità d’Italia, l’autrice coglie l’occasione per parlare delle donne italiane che in tale periodo si sono messe in evidenza in campo scientifico: “Questo libro vuole raccontare le loro vicende, radiografando la società in cui si sono mosse e sottolineando l’originalità dei risultati raggiunti, citando anche gli uomini che hanno creduto nel loro potenziale e le hanno incoraggiate alla ricerca. L’intento è di creare un tributo al loro lavoro caparbio e alla loro straordinaria intelligenza.”
Oggi le donne italiane che lavorano in ambito scientifico sono il 50%, ma devono ancora lottare contro gli stereotipi, nonostante mostrino spesso capacità e competenze superiori a quelle dei colleghi maschi. “Le donne risultano ben rappresentate solo in alcuni campi della scienza, quali la biologia e la medicina; sono abbastanza presenti nella matematica, mentre non abbondano in discipline come la fisica e l’ingegneria, considerate ancora appannaggio maschile.” L’assenza più evidente è nelle posizioni di maggiore responsabilità, forse perché le donne sono meno disposte degli uomini a combattere per la propria carriera. 
In passato, alle donne era precluso l’accesso alle università e l’istruzione veniva impartita all’interno della famiglia da maestri pagati privatamente, oppure nei conventi, dove però lo studio prevalente era quello della teologia. In questo stato di cose, riuscivano ad emergere quelle che potevano contare su un padre, un fratello o un marito scienziato, come dimostrano gli esempi di Ipazia (IV sec. d.C.) e di Maria Gaetana Agnesi (1718/1799), entrambe istruite dal padre. Ancora all’inizio del XX secolo, in molti paesi europei era precluso l’accesso delle donne alle università: in Italia, le donne furono ammesse alle scuole pubbliche solo nel 1874. Tutto questo era dato dalla convinzione che le donne fossero inferiori biologicamente agli uomini e, per questo motivo, non potessero competere con loro a livello intellettivo. Solo nel 2006 alcuni ricercatori dell’Università della British Columbia in Canada, con un’indagine accurata, hanno rivelato che non esistono differenze genetiche che giustifichino l’idea che l’uomo sia più portato verso la scienza della donna.
 
La scelta delle ricercatrici della Strickland è stata fatta a partire dalle donne che hanno dato un apporto originale nelle scienze di base durante i centocinquant’anni dall’Unità d’Italia, che hanno dato “un esempio di coraggio, tenacia e forza di volontà nell’imporre le proprie idee, le proprie certezze, in un contesto spesso non favorevole all’ingresso femminile nel sociale e quindi nel mondo della scienza”. 
Le diciannove scienziate sono per la maggior parte matematiche (sette), poi ci sono le scienziate impegnate nella fisica (tre). Tra le scienziate proposte, solo quattro sono ancora in vita: Massimilla Baldo Ceolin, Maria Bianca Cita Sironi, Margherita Hack e Rita Levi Montalcini, tutte e quattro socie dell’Accademia dei Lincei nella classe di Scienze fisiche. Tra le diciannove scienziate, molte possono essere citate per essere state le prime a fare qualcosa: la Ceolin è stata la prima donna a ricoprire una cattedra all’Università di Padova, la Calabresi, una delle insegnanti della Hack, ha perso l’abilitazione alla libera docenza per le leggi razziali e, dopo l’arresto nel 1944, si è data la morte con una fiala di veleno. La Fabri è stata la prima donna a laurearsi alla Scuola Normale di Pisa, la Hack è stata la prima donna a dirigere un osservatorio astronomico in Italia, Rita Levi Montalcini è da evidenziare perché per tre anni, alla fine delle superiori, continuò a chiedersi cosa fare nella vita e decise della propria carriera solo dopo la morte per tumore della propria governante. Anche lei, quando furono promulgate le leggi razziali, trovò rifugio a Bruxelles e si impegnò come medico volontario per gli alleati. La Mameli Calvino è tra le prime laureate in Italia e la prima donna a conseguire la libera docenza in botanica ed è ricordata anche come madre di Italo Calvino, che la descrisse come “una donna molto severa, austera, rigida nelle sue idee, tanto sulle piccole che sulle grandi cose”.
 
Le studiose sono: Giuseppina Aliverti (fisica), Massimilla Baldo Ceolin (fisica), Margherita Beloch Piazzolla (matematica), Giuseppina Biggiogero Masotti (matematica), Rita Brunetti (fisica), Enrica Calabresi (zoologa), Maria Cibrario Cinquini (matematica), Maria Bianca Cita Sironi (geologa), Cornelia Fabri (matematica), Elena Freda (matematica), Margherita Hack (astrofisica), Rita Levi Montalcini (neurobiologa), Eva Giuliana Mameli Calvino (botanica), Lydia Monti (chimica), Pia Nalli (matematica), Filomena Nitti Bovet (chimica), Maria Pastori (matematica), Livia Pirocchi Tonolli (limnologa), Pierina Scaramella (botanica).
 
.
 
COMMENTO:
Una lettura interessante, che invita all’approfondimento: il libro aiuta a scoprire un mondo, regala un po’ di notorietà a donne sconosciute ai più, ma le loro biografie sono tracciate come piccoli assaggi, come un invito ad andare oltre. L’introduzione della Strickland permette di farsi un’idea della situazione della donna in Italia, attualmente e nel passato: è incredibile come queste donne siano riuscite a realizzare qualcosa di grande nonostante i pregiudizi, nonostante tutte le difficoltà e gli ostacoli che hanno dovuto superare. Quali vette avrebbero raggiunto se fossero state uomini? Una cosa è certa: il loro lavoro e il loro acume non avrebbe avuto più valore, considerato che sono riuscite a lasciare un segno nella storia del nostro paese nonostante la società abbia cercato di impedir loro in tutti i modi di portare avanti la ricerca.
Pubblicato in Libri
Etichettato sotto
Martedì, 06 Agosto 2013 08:00

L'ultima risposta di Einstein

TRAMA: 
Javier Costa, giornalista e autore di un programma radiofonico, durante una puntata su Einstein ipotizza che lo scienziato non abbia reso pubbliche le sue ultime scoperte, per il timore che l’umanità non fosse pronta a recepirle. Al termine della puntata, trova una busta sulla quale è riportata una formula, E = ac2, e contenente una cartolina che lo invita a Cadaqués. L’appuntamento è nell’abitazione di un certo Yoshimura, apparentemente ignaro di tutto, e ad attenderlo ci sono anche Pawel, professore di fisica dell’Università di Cracovia, Jensen, editore di “Mysterie”, una rivista pseudo-scientifica e Sarah Brunet, una trentenne francese che sta completando una tesi su Mileva Marić, la prima moglie di Einstein. Durante la discussione che segue, si parla della prima figlia di Mileva e Einstein, nata fuori dal matrimonio, Lieserl: Pawel ipotizza che sia depositaria dell’ultimo segreto del padre.
Il lunedì successivo, Javier apprende che Yoshimura è stato assassinato e teme di essere uno dei sospettati. Con una mail, il direttore editoriale del Princeton Quantic Institute gli chiede di concludere la biografia di Einstein iniziata da Yoshimura e Javier accetta, rinunciando al suo incarico alla radio. Si reca a Zurigo, per ripercorrere la vita di Einstein a partire dal Politecnico e al Cabaret Voltaire, dove lo ha indirizzato una telefonata anonima, incontra un’adolescente dai capelli azzurri e trova le indicazioni per un ulteriore appuntamento: venerdì a mezzogiorno, a Berna, al Rosengarten. Qui incontra Sarah Brunet, visibilmente infastidita dall’incontro e Jacob Suter, la massima autorità di Berna per quel che riguarda Einstein, che viene ucciso.
Successivamente, Sarah riceve un sms sul proprio cellulare che indica un ulteriore appuntamento, a Belgrado in una caffetteria dove, con Javier, incontra Jensen, che dichiara di conoscere l’ultima risposta di Einstein. Morirà avvelenato un attimo prima di svelare il segreto al mondo.
Javier e Sarah parlano a Novi Sad con una sorellastra di Lieserl, che fornisce loro alcune informazioni sulla donna. A New York incontrano David, figlio di Lieserl, che però li congeda bruscamente. Javier si reca a Princeton, dove trova una lettera della nipote Mileva, figlia di Lieserl, al nonno Einstein e incontra anche Pawel, che insiste per accompagnarlo a New York in auto. Durante il viaggio, lo scienziato attira il giornalista in una trappola e solo l’intervento di Lorelei, la ragazzina dai capelli azzurri che lo segue da Zurigo, riesce a salvarlo, nonostante rimanga seriamente ferito…
 
.
 
COMMENTO:
Una caccia al tesoro che si conclude con una risposta inaspettata e che, durante tutto il dispiegarsi della vicenda, ci accompagna con la biografia di Einstein. Javier, il protagonista, approfondisce le sue conoscenze proprio grazie al suo coinvolgimento nella vicenda e noi lettori, con lui, scopriamo eventi della vita del geniale fisico di cui magari non eravamo a conoscenza.
Un libro poco impegnativo, ma piacevole, consigliato a tutti.
Pubblicato in Libri
Etichettato sotto
Martedì, 06 Agosto 2013 07:57

L'uomo che ha inventato il XX secolo

TRAMA: 
Nato in Croazia nel 1856, Tesla mostrò fin da piccolo un particolare interesse per la meccanica. Mentre concludeva gli studi di ingegneria, estese i suoi interessi all’elettricità e cominciò a pensare a come realizzare un motore a corrente alternata.
Charles Batchellor, un ingegnere inglese amico di Edison, riconobbe subito le potenzialità di Tesla e quando il direttore per cui lavorava si rimangiò la promessa del premio di 25.000 dollari, lo convinse a lavorare per Edison negli Stati Uniti. Tesla si mise in viaggio nell’estate del 1884: dopo il furto dei bagagli e del biglietto, fu fatto salire a bordo grazie alla lettera con cui Batchellor lo presentava a Edison, che costituiva una prova della sua identità. Tesla immaginava che una volta che le sue nuove teorie sulla corrente alternata fossero state rivelate a Edison – all’epoca affermato inventore elettrico – questi sarebbe stato entusiasta di finanziare le sue ricerche. Invece Edison gli offrì subito un impiego, ma disse di non avere alcun interesse riguardo a possibili nuove teorie sull’elettricità. Gli promise 50.000 dollari se avesse risolto il problema dell’accoppiamento delle dinamo e Tesla vi lavorò per tutto l’anno successivo, risolvendo il problema. Alla richiesta del premio pattuito, però, si sentì rispondere: «Tesla, ma lei non capisce l’humour americano!» perciò si licenziò.
Tesla ottenne l’appoggio di Brown, della Western Union Telegraph, che fu in grado di apprezzare le sue idee e costituì la Tesla Electric Company. A Tesla furono concessi trenta brevetti differenti e la sua società ottenne il controllo commerciale completo dell’industria della corrente alternata. Durante una conferenza, il 16 maggio 1888, presso l’Istituto americano di ingegneria elettrica, Tesla incontrò George Westinghouse, un abile commerciante che gli offrì un milione di dollari per i suoi brevetti.
Nell’autunno del 1888 l’Assemblea legislativa dello Stato di New York promulgò una legge con la quale consentiva l’uso della sedia elettrica al posto dell’impiccagione, per le esecuzioni capitali. Questo era il risultato della campagna pubblicitaria di Edison, che aveva evidenziato i rischi della corrente alternata. Il 6 agosto 1890, William Kemmler fu ucciso con la corrente, dopo venti minuti di lenta agonia: questa terribile esecuzione fu talmente tragica che solo con la scoperta dell’effetto pellicolare, Tesla poté dimostrare che la corrente poteva attraversare il corpo umano senza dare problemi, esibendosi in dimostrazioni spettacolari.
Nel 1889, a causa di serie difficoltà economiche, sia Edison che Westinghouse vendettero la propria impresa: in questo modo, Edison e Tesla furono estromessi. In quel periodo, si stava allestendo una Fiera mondiale a Chicago: gli organizzatori cercavano un impianto di illuminazione e Westinghouse vinse l’appalto contro la General Electric, l’impresa che era stata di Edison. Il passo successivo fu lo sfruttamento dell’energia generata dalle cascate del Niagara, con il trasporto dell’elettricità fino alla città di Buffalo, a 35 km dalle cascate: Westinghouse strinse un accordo con la General Electric per presentare un’offerta congiunta per la realizzazione della centrale. Questo segnò la fine della “guerra delle correnti”: gli unici sconfitti furono Edison e Tesla, anche se la stampa riconobbe a quest’ultimo il merito della realizzazione della centrale.
Dal 1893 al 1895 Tesla ebbe un periodo particolarmente creativo: avendo ancora un po’ di denaro di Westinghouse, poté costruire la sua prima radio e nel 1893, durante una conferenza pubblica descrisse le cinque caratteristiche basilari dell’impianto. Tesla era in notevole anticipo rispetto a Marconi, come venne riconosciuto da un tribunale statunitense sei mesi dopo la sua morte, solo che la notte prima dell’ultimo collaudo un incendio distrusse completamente il suo laboratorio. Grazie alla sua prodigiosa memoria, le sue idee non erano completamente perse e un finanziatore concesse a Tesla 40.000 dollari per aiutarlo a ricominciare: fondò una nuova società e un nuovo laboratorio e, dopo due anni, riuscì a brevettare il suo lavoro. Il 2 settembre del 1897, allestì una spettacolare dimostrazione, che però riscosse uno scarso interesse e per questo Tesla abbandonò il progetto.
Il 18 maggio 1899, Tesla arrivò a Colorado Springs, dove costruì il suo nuovo laboratorio. Nel suo diario – che tenne dal 1° giugno 1899 al 7 gennaio 1900 – scrisse che gli esperimenti procedevano con successo: scoprì come trasmettere energia elettrica senza fili, raggiungendo un raggio d’azione di 42 km, con 10.000 watt di potenza ottenuti dalle stazioni riceventi.
Intorno alla metà di gennaio del 1900, Tesla era di nuovo in difficoltà: aveva speso tutti i soldi del prestito, perciò scrisse a Westinghouse proponendogli una nuova collaborazione, ma questi lo ignorò. Scrisse al «Century Magazine», per parlare delle sue invenzioni e questo gli regalò una reputazione da profeta delirante. Inaspettatamente, J.P. Morgan si mostrò interessato e gli offrì 150.000 dollari per il 51% di tutti i brevetti di tecnologia “senza fili” che lui avrebbe sviluppato. La sua era un’abile mossa per controllare le invenzioni di Tesla e per fare in modo che non danneggiassero i suoi investimenti. Tesla cominciò a realizzare il proprio laboratorio a Long Island il 23 luglio 1901, in una località denominata Wardencliff. Dopo una spesa di 200.000 dollari, Tesla non era ancora pronto a sperimentare l’impianto ed era di nuovo al verde, ma Morgan rifiutò di sovvenzionarlo ulteriormente. Tesla cercò di vendere i suoi ultimi averi, per racimolare un po’ di denaro, ma fu tutto inutile: il suo sogno sull’energia libera senza fili era andato in fumo. A cinquant’anni, Tesla era ancora una volta senza un centesimo.
Stranamente, dopo la sua morte Tesla fu dimenticato, se si esclude il riconoscimento dell’attribuire il suo nome all’unità di misura dell’induzione elettromagnetica. In parte, l’oblio in cui è caduto fu una sua creazione, visto che non lasciò alcuna testimonianza e l’opinione pubblica lo ricorda solo per la sua “follia”. Rimase fisicamente attivo e in salute fino a ottantuno anni, quando fu investito da un taxi a New York: da quel momento cominciò a peggiorare. Negli ultimi tempi, Tesla cominciò a parlare di un ordigno al plasma e il 5 gennaio del 1943, telefonò al Dipartimento della guerra, per offrire i segreti della sua arma. Morì per un attacco cardiaco tra il 5 e l’8 gennaio. L’FBI sequestrò i suoi oggetti per conto del governo e J. Edgar Hoover raccomandò «la massima riservatezza sulle ultime vicende collegate a Tesla». In altre parole, il lavoro di una vita fu dichiarato “top secret”. Il 18 ottobre 1993, l’HAARP (High Frequency Active Auroral Research Program), esaminò gli stessi fenomeni studiati da Tesla cento anni prima in Colorado, dimostrando che la sua arma è realizzabile.
“Era uno scienziato brillante, un profeta che leggeva realmente nel futuro, ma che il suo tempo non fu in grado di comprendere.”
 
COMMENTO:
Questo libro non tratta solo della vita di Tesla: uno dei capitoli è dedicato alla storia dell’elettricità, un altro alla storia dell’illuminazione e si mettono in evidenza i meriti di Edison nel campo degli affari, tracciando la storia del suo successo. Il libro cerca di essere il più possibile obiettivo nel considerare i meriti e i limiti di Tesla: uomo dal grande ingegno, il cui unico scopo era di risolvere i problemi che si poneva, senza considerare quanto avrebbero potuto fruttargli dal punto di vista economico. I suoi esperimenti avevano una solida base di studio e utilizzavano un’idea di elettricità molto più avanzata di quella della maggior parte degli scienziati contemporanei, non per nulla alcune sue grandi invenzioni sono state riscoperte e rivalutate solo nell’ultimo ventennio. I numerosi aneddoti e la descrizione delle invenzioni accompagnano lo sviluppo della storia, che è sicuramente alla portata di tutti, ma particolarmente consigliato agli appassionati di elettronica e agli insegnanti.
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 21:21

Tesla lampo di genio

TRAMA: 
L’obiettivo di Massimo Teodorani è di “presentare al lettore un quadro il più possibile completo e chiaro su una delle figure scientifiche più geniali di tutti i tempi nel campo della fisica dell’elettromagnetismo e delle tecnologie da essa ricavate: quella di Nikola Tesla.”
Nella prima parte del libro, viene presentata la biografia dello scienziato: laureatosi in ingegneria con indirizzo elettronico e meccanico al Politecnico Joanneum di Graz, Tesla sbarca negli Stati Uniti con la sua povertà e una lettera di raccomandazioni che gli permette di lavorare per Thomas Edison. Quando questi si rifiuta di corrispondergli la paga promessa, Tesla se ne va e fonda, all’età di trent’anni, la “Tesla Electric Light&Manufacturing”, che gli permetterà di realizzare il suo grande sogno della corrente alternata. Nel 1899 si trasferisce a Colorado Springs, dove prosegue i suoi studi fino al 7 gennaio del 1900, raccogliendo i dati in un diario di circa 500 pagine. Al termine di questa esperienza, ottiene dei finanziamenti per la Torre Wardenclyffe, che viene smantellata durante la prima guerra mondiale. Abbandonato dai suoi finanziatori, che non volevano investire in un’impresa che non avrebbe prodotto alcun guadagno – il sogno di una forma di energia a disposizione di tutti gratuitamente – Tesla intenta causa a Marconi per la paternità dell’invenzione della radio e rifiuta per due volte il Premio Nobel. Povero e solo, conclude la sua vita all’età di 86 anni, a causa di un attacco cardiaco.
Nella seconda parte, l’autore ci parla del carattere di questo scienziato: da un Tesla bambino con una grande curiosità e tanta voglia di sperimentare – come dimostra il suo motore ad acqua alimentato ad insetti o la sua caduta dal tetto con l’ombrello per cimentarsi nel volo – nasce una mente poliedrica, che era in grado di risolvere a mente calcoli complicati e di realizzare progetti senza bisogno di scrivere, grazie all’incredibile capacità di visualizzazione. Eccentrico, introverso e molto serio, era perseverante e tenace e lavorava in solitudine, perché aveva ritmi massacranti: unico momento di pausa erano le passeggiate in mezzo alla natura, durante le quali si rilassava e trovava lo spunto per nuove intuizioni o per la soluzione improvvisa a problemi scientifici. 
Nella terza parte, Teodorani ci presenta gli attuali ricercatori, che seguono le orme di Tesla, per imbrigliare la cosiddetta “free energy”: probabilmente il più famoso è un ingegnere nucleare statunitense, Thomas Bearden, poi ci sono numerosi dilettanti senza alcune base né matematica né metodologica, come praticanti della New Age, ufologi, gruppi terroristici interessati alle armi elettromagnetiche progettate dallo scienziato.
 
.
 
COMMENTO:
È interessante non solo leggere la vicenda biografica di questo genio del nostro passato recente, Nikola Tesla, ma anche conoscere le sue difficoltà, combattute con la volontà di fare qualcosa di buono per l’umanità, in modo completamente disinteressato. 
L’autore ha uno stile essenziale e sintetico: in poche pagine ci viene mostrata tutta la potenza della mente di Tesla, che ha modellato il nostro tempo con le sue invenzioni, le stesse che ormai fanno parte della nostra quotidianità: spesso, ignoriamo il nome di chi ha pensato queste innovazioni e questo libro può offrirci degli spunti per approfondire il lavoro di questa mente geniale.
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 21:11

Gli atomi di Boltzmann

TRAMA:
Negli ultimi anni del XIX secolo, nessuno era in grado di definire un atomo e la dichiarazione di Ernst Mach, nel gennaio del 1897, a una seduta dell’Accademia Imperiale delle Scienze di Vienna, «Non credo che esistano gli atomi!», ben si inserisce in questo quadro di incertezza. Al contrario, Boltzmann «era animato da una fede incrollabile nell’ipotesi atomica», al punto tale che il suo lavoro in fisica fu centrato su quest’unico tema. Da una legge fisica che era una semplice relazione quantitativa tra fenomeni osservabili, gli scienziati dovettero andare al di là delle apparenze e, da questo punto di vista, Boltzmann fu un pioniere: capì che temperatura e pressione non erano che l’espressione del movimento degli atomi e introdusse concetti teorici completamente nuovi: «Mostrò che le leggi della fisica potevano essere fondate su una base probabilistica, e nondimeno rimanere attendibili». Proprio per la novità delle intuizioni di Boltzmann, le sue idee incontrarono una vivace opposizione.
 
Già nel dicembre del 1845, Waterston inviò un manoscritto alla Royal Society, nel quale ipotizzava che qualunque gas fosse costituito da un gran numero di piccolissime particelle, che egli chiamò molecole, in movimento disordinato. Una proposta simile era giunta, venticinque anni prima, da Herapath, anche se la sua trattazione non era così articolata. Nel 1738, Daniel Bernoulli aveva trovato una relazione teorica tra la pressione e l’energia di vibrazione degli atomi del gas, ma la sua teoria non aveva suscitato particolare interesse e ben presto era stata dimenticata. La teoria cinetica divenne una teoria di tutto rispetto grazie ai personaggi autorevoli che la proposero successivamente, ovvero Clausius, Maxwell e Boltzmann: «Clausius, il più anziano dei tre, aveva avviato la teoria cinetica alla rispettabilità, e Maxwell le diede contributi fondamentali, quando non era impegnato in altre imprese di carattere teorico. Ma fu Boltzmann a fare del pieno sviluppo della teoria cinetica la ragione della propria esistenza e a prendere sulle proprie spalle i passi falsi della teoria non meno dei suoi successi.» 
Nel 1863, Ludwig Boltzmann si iscrisse all’università di Vienna, dove ebbe la fortuna di incontrare alcuni tra i fisici più aperti alle nuove idee dell’Europa continentale: il loro precoce interesse per queste innovazioni tecniche fu un grande stimolo per lui. Nel 1866, Boltzmann conseguì il dottorato e il nuovo direttore dell’Istituto di Fisica di Vienna, Josef Stefan, vedendolo dotato di grandi potenzialità, lo assunse come assistente. Nel frattempo, il lavoro di Clausius, con la definizione di libero cammino medio, era stato sviluppato da Maxwell con la distribuzione delle velocità e, nel 1868, Boltzmann pubblicò una memoria che conteneva la dimostrazione della formula di Maxwell e proponeva una legge generale e una giustificazione fisica per ciò che fino a quel momento era stato soprattutto un ragionamento di tipo matematico. Per compiere ulteriori progressi con la teoria cinetica, utilizzò strumenti matematici raffinati, applicò le leggi della meccanica di Newton, utilizzò le leggi della probabilità e la statistica segnando «un punto di svolta nell’evoluzione della fisica teorica». Non si rese conto, in un primo momento, della «radicalità della rivoluzione che stava innescando». Purtroppo sembra che nessun fisico avesse la capacità e l’interesse per seguire i progressi del lavoro di Boltzmann: solo Maxwell, in Inghilterra, si era reso conto dell’importanza crescente di statistica e probabilità in fisica. 
Con la sua memoria pubblicata a Vienna nel 1872, Boltzmann esponeva la sua analisi in modo particolareggiato, pervenendo a un’equazione differenziale sorprendentemente semplice. Presentando il teorema di minimo, noto come teorema-H, diede con la grandezza H una definizione cinetica dell’entropia. Maxwell, con l’idea del diavoletto, per primo comprese che il secondo principio della termodinamica aveva soltanto una certezza di carattere statistico. I critici conclusero che le leggi della termodinamica non erano leggi vere ma soltanto approssimate, valide «quasi sempre», ma Boltzmann riuscì a quantificare l’improbabilità del flusso di calore da un corpo freddo a uno caldo e ne ricavò forse il risultato più significativo della sua carriera. 
Intanto, lavorando come insegnante a Graz, Boltzmann si lamentava di essere troppo lontano dal centro dell’attività scientifica e di soffrire per la mancanza di stimoli intellettuali. La morte di Kirchhoff nel 1887 liberò una cattedra di prestigio a Berlino e Boltzmann venne raccomandato per il posto. Egli stesso anelava al trasferimento ma continuò a temporeggiare e solo la successiva chiamata di Monaco di Baviera lo trovò consenziente: ebbe un proprio istituto di fisica teorica, a partire dall’autunno del 1890. Si trasferì poi, dal settembre del 1894, all’Università Imperiale di Vienna: «All’età di cinquant’anni aveva ottenuto il posto più prestigioso cui un fisico potesse aspirare nella sua città natale, divenendo direttore dell’istituto cui era legato da un affettuoso ricordo, e dove, circa tre decenni prima, il suo giovanile ingegno aveva cominciato a risplendere, e la sua carriera scientifica era iniziata sotto i più promettenti auspici.»
La filosofia di Ernst Mach, che riteneva che la scienza dovesse fondarsi su fatti osservabili, continuava a sostenere che gli atomi erano un’invenzione e cominciava ad avere un seguito: Boltzmann cominciò a sentirsi infelice e incompreso.
Negli ultimi cinque anni del XIX secolo, la fisica fu sconvolta da una serie di scoperte inattese, con nuove forme di energia e di materia, che divennero la base di quasi tutta la nuova fisica del XX secolo. Nel 1905 Albert Einstein pubblicò quattro famose memorie che cambiarono per sempre il volto della fisica: le prime due memorie «dimostravano l’utilità dei metodi statistici di Boltzmann in un’area nuova e fornivano una prova quasi tangibile dell’esistenza degli atomi», con l’elegante spiegazione del moto browniano. A Vienna, Boltzmann non era informato dei più recenti lavori: era ancora impegnato nel suo scontro con Mach. 
Nel maggio del 1906, funzionari dell’università riconobbero che Boltzmann non era più in grado di insegnare e il 5 settembre del 1906, il suo corpo fu rinvenuto da una delle figlie impiccato all’intelaiatura della finestra nella camera di un albergo di Duino. 
Negli anni successivi, la fisica mutò radicalmente: ormai l’esistenza degli atomi non era più messa in dubbio. Boltzmann lasciò in eredità i risultati scientifici che ponevano le fondamenta della teoria quantistica e per certi versi anticipavano la dinamica del caos.
 
COMMENTO:
“Una biografia organica e completa di Ludwig Boltzmann deve ancora essere scritta, e questo libro non si propone di colmare tale lacuna”. Nella prefazione, l’autore ci informa che i particolari della vita di Boltzmann, soprattutto quelli della prima parte, sono scarsi e provengono dai ricordi e dagli aneddoti di coloro che lo conobbero. Il libro è in ogni caso un’ottima lettura perché, oltre a descriverci la vita di Boltzmann, ci dà uno spaccato dell’Europa della fine del XIX secolo – in particolare dell’impero austro-ungarico – e ci permette di cogliere fino in fondo i mutamenti scientifici che hanno interessato quel periodo, con la nascita della fisica teorica e lo scontro con la filosofia di Mach, così influente sulla ricerca scientifica del periodo. 
Le tematiche presenti nel libro sono ancora attuali: la vicenda umana di Boltzmann non è diversa da quella di una qualsiasi persona che lotta per le proprie idee e ne è alla fine sopraffatto e il dibattito moderno sulle supercorde, dal punto di vista filosofico, non è molto diverso da quello antico sugli atomi. Interessanti, inoltre, sono le vite di Maxwell, Mach, Gibbs, Planck, che fanno da corollario a quella di Boltzmann.
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 21:10

Le regole del gioco

TRAMA:
I principi della termodinamica fanno parte delle leggi che descrivono l’universo e si occupano nello specifico delle “proprietà dell’energia e delle sue trasformazioni da una forma all’altra”. Scopo di questa trattazione della termodinamica è guidare il lettore nella comprensione del “ruolo dell’energia nel mondo”, perché è riduttivo pensare che la termodinamica si occupi soltanto delle macchine a vapore. Anche se i concetti basilari sono stati scoperti nell’Ottocento, “quando si sono formulati i principi della termodinamica e se ne sono esplorate le conseguenze, ci si è resi conto che toccavano una serie vastissima di fenomeni: l’efficienza delle macchine termiche, delle pompe di calore e dei frigoriferi, ma anche la chimica e persino i processi della vita”.
 
I principi della termodinamica sono quattro e sono numerati da zero a tre.
Il principio zero è stato una “rifinitura tardiva” – visto che soltanto all’inizio del Novecento ha avuto un nome, da qui il motivo per cui è stato chiamato principio zero – ed è la base per l’esistenza del termometro e delle diverse scale di temperatura. 
Il primo principio, che deriva dalla legge di conservazione dell’energia, introduce la grandezza fisica energia, ovvero la capacità di un sistema di compiere lavoro. 
Il secondo principio introduce l’entropia ed “è una delle più grandi leggi scientifiche di tutti i tempi”: “nessuna legge scientifica ha contribuito a emancipare la mente umana più del secondo principio della termodinamica” e, come dice il romanziere ed ex chimico C.P. Snow “ignorare il secondo principio della termodinamica equivale a non aver mai letto Shakespeare”. Forse proprio per questo motivo, il secondo principio è così complesso, dato che fornisce la base per comprendere il motivo dei cambiamenti che avvengono in natura: “non spiega soltanto perché funzionano i motori o avvengono le reazioni chimiche, ma è anche la base per capire le conseguenze più raffinate di quelle reazioni, ossia gli atti di creatività letteraria, artistica e musicale che arricchiscono la nostra cultura”. Infatti, anche se è stato formulato a partire dal funzionamento delle macchine a vapore, “una volta formulato in termini astratti si applica a qualsiasi trasformazione”. Il secondo principio è lo specchio dell’ansia con cui, all’inizio dell’Ottocento, i francesi osservavano l’industrializzazione dell’Inghilterra: Sadi Carnot, ingegnere francese, analizzando i limiti fisici dell’efficienza delle macchine a vapore, chiarì fino in fondo il loro funzionamento, ma, essendo in anticipo sui tempi, non venne ascoltato. Solo il lavoro di William Thomson Lord Kelvin e di Rudolf Clausius contribuì all’enunciato del secondo principio con il quale riconobbero la spontaneità di un processo che viene compiuto senza spendere lavoro. Clausius definì anche la variazione di entropia e, di conseguenza, le trasformazioni spontanee – corrispondenti ad un aumento dell’entropia totale dell’universo – e Kelvin definì una nuova scala di temperatura, in termini di lavoro, usando la formula di Carnot per l’efficienza di una macchina a vapore: è la scala citata nel terzo principio che stabilisce che non si può raggiungere lo zero assoluto. In altre parole, si possono raffreddare gli oggetti, ma non si può scendere sotto lo zero, anche se “sotto lo zero si trova un mondo speculare, bizzarro e accessibile”: ottimi esempi sono alcuni fenomeni quali la superconduttività – ovvero la capacità di alcune sostanze di condurre elettricità con resistenza nulla, che è stata osservata proprio raffreddando l’elio a circa 4 K – e la superfluidità, ovvero l’assenza di viscosità. Gli esperimenti di raffreddamento sono molto difficili, non solo perché è necessaria una grande quantità di energia per raggiungere temperature molto basse, ma anche perché, come ci dice il terzo principio, è impossibile raffreddare un oggetto tramite una sequenza finita di trasformazioni cicliche. 
Il terzo principio ha un carattere diverso rispetto ai tre precedenti, innanzi tutto perché “non porta a introdurre una nuova funzione termodinamica; rende però possibile l’applicazione di quelle già note”, in secondo luogo perché sembra irrilevante per la vita quotidiana. In ogni caso, resta aperta la possibilità di raggiungere lo zero assoluto con processi non ciclici, tant’è che il laser sfrutta le temperature assolute negative e quindi i lettori CD e DVD funzionano a temperature negative.
 
“Ho cercato di trattare i concetti centrali, che in origine sono emersi dagli studi sulle macchine a vapore, ma arrivano ad abbracciare anche l’atto del concepire un pensiero. Questo gruppetto di principi potentissimi governa davvero l’universo, permeando e rischiarando tutto ciò che conosciamo.”
 
COMMENTO:
Trattazione interessante della termodinamica, visto che mette in luce tutte le implicazioni di questa ricerca scientifica, non limitandosi all’enunciato dei principi e al loro significato fisico. Consigliato a tutti gli studenti impegnati nello studio della termodinamica.
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 21:08

La scomparsa di Majorana

TRAMA:
“La scomparsa di Majorana” è stato scritto nel 1975 da Leonardo Sciascia. Il romanzo si apre con la lettera di Giovanni Gentile al senatore Bocchini, nella quale gli raccomanda di cercare il professore nei conventi, dove potrebbe essersi segregato. Il senatore a sua volta ordina nuove e più approfondite indagini, ma in una nota di servizio ribadisce implicitamente la convinzione che il professore si sia suicidato. Anche Mussolini fu informato della scomparsa di Majorana e il suo intervento fu sollecitato da una supplica della madre dello scienziato e da una lettera di Fermi: forse Mussolini se ne interessò per qualche tempo, magari si informò sul punto cui erano arrivate le indagini, ma nulla di più. 
Nato a Catania il 5 agosto 1906, Ettore Majorana conseguì la licenza liceale nel 1923 e, quasi al termine degli studi di ingegneria, nel 1928 passò alla Facoltà di Fisica, dove si laureò in Fisica Teorica l’anno dopo, sotto la direzione di Fermi. Negli anni successivi, frequentò liberamente l’Istituto di Fisica di Roma. Numerosi sono gli aneddoti raccontati da Amaldi, Segrè e Laura Fermi riguardanti sia la figura di Majorana che il rapporto tra lui e Fermi: il loro fu un rapporto alla pari, ma al tempo stesso distaccato e critico, grazie al loro antagonismo – espresso da alcune gare con complicatissimi calcoli – e per questo, secondo Sciascia, si percepiva in Majorana un senso di estraneità al gruppo di via Panisperna. «Non uno di coloro che lo conobbero e gli furono vicini, e poi ne scrissero o ne parlarono, lo ricorda altrimenti che ‘strano’», ci dice Sciascia. 
Majorana aveva intuito la teoria di Heisenberg prima di lui, ma l’aveva semplicemente scarabocchiata su un pacchetto di sigarette e comunicata a Fermi e agli altri ragazzi senza però pubblicarla. Quando finalmente Heisenberg pubblicò la teoria, Majorana sentì un sentimento di ammirazione nei confronti del grande fisico e questo forse facilitò la sua partenza per Lipsia, sollecitata anche da Fermi. Majorana arrivò a Lipsia il 20 gennaio del 1933 e subito dichiarò di essere stato accolto molto cordialmente: con Heisenberg si intratteneva con discussioni scientifiche e partite a scacchi. In Germania, Majorana pubblicò un lavoro sulla «Zeitschrift für Physik», ma oltre a imparare il tedesco non fece altro. 
Rientrò a Roma in agosto e fece di tutto per vivere da solo: dall’estate del ’33 all’estate del ’37 uscì raramente di casa e, ancora più raramente, si fece vedere all’Istituto di Fisica. Non voleva parlare di fisica, ma questo non significa che l’avesse abbandonata, al contrario può essere la dimostrazione che ne era ossessionato. Poco prima di scomparire, distrusse tutto, lasciando solo il saggio che Giovanni Gentile junior pubblicherà nel numero di febbraio-marzo 1942 sulla rivista «Scientia». La sorella Maria ricorda che Ettore diceva spesso, in quegli anni: «la fisica è su una strada sbagliata». Forse questo lascia intendere che Majorana aveva intuito la scoperta dell’atomica e aveva capito quale strada avrebbe intrapreso la fisica negli anni successivi: forse per questo se ne allontanò. Per Amaldi questa non è una tesi credibile, come dimostra quanto pubblicato nell’«Espresso» del 5 ottobre 1975, dove definisce l’idea di Sciascia una fantasia «priva di fondamento». 
Qualcuno riconosce in Majorana i sintomi dell’esaurimento nervoso, ovvero parla di follia, ma questo sarebbe in conflitto con la scelta dello scienziato di partecipare ad un concorso per una cattedra. Tra i vincitori predestinati il figlio di Giovanni Gentile, che sarebbe quindi stato escluso dalla terna vincitrice per la partecipazione di Majorana. Per scongiurare tutto questo, il filosofo Giovanni Gentile nominò Majorana alla cattedra di Fisica Teorica dell’Università di Napoli per «chiara fama». 
Nei primi tre mesi del 1938, la vita di Majorana si svolse tra l’albergo e l’Istituto di Fisica. Sciascia vede la sua scomparsa come una “minuziosamente calcolata e arrischiata architettura”. La sera del 25 marzo, Ettore Majorana si imbarca a Napoli sul postale diretto a Palermo, alle 22,30. Ha impostato una lettera per Carrelli, direttore dell’Istituto di Fisica dove insegna e ne ha lasciata in albergo una per i familiari. Giunto a Palermo, Majorana invia un telegramma a Carrelli, chiedendogli di non prestare attenzione alla sua lettera e, successivamente, gli scrive un’altra lettera. Pare che si sia imbarcato il giorno successivo, alle 5,45, per tornare a Napoli, e secondo alcune testimonianze sarebbe qui arrivato, ma da questo momento se ne persero le tracce.
Il Superiore della Chiesa detta del Gesù Nuovo, a Napoli, riconobbe Ettore come colui che si era presentato a fine marzo, chiedendo di essere ospitato per fare esperienza di vita religiosa, ma quando gli chiese di presentarsi più avanti non lo vide più. In ogni caso, pare difficile credere alla tesi del suicidio, considerato che Ettore portò con sé il passaporto e quanto più denaro poteva. Secondo Vittorio Nisticò, direttore del giornale «L’Ora», si potrebbe credere che Majorana abbia trovato rifugio in un convento certosino, che a lui era capitato di visitare nell’immediato dopoguerra e nel quale aveva sentito che si trovava «un grande scienziato».
 
COMMENTO:
Il modo in cui viene presentata la scomparsa di Majorana è decisamente originale, visto che Sciascia non ha conosciuto lo scienziato di persona e, quindi, non è condizionato dai suoi eventuali pregiudizi. Inoltre, ha avuto modo di formarsi una sua idea, dopo aver spulciato tutti i documenti esistenti in merito alla scomparsa. 
Il periodare lungo dell’autore non rende sempre agevole la lettura, soprattutto all’inizio, ma con il passare delle pagine ci si abitua e non si nota più. Vale sicuramente la pena di dedicarsi alla lettura di questo testo – peraltro molto breve – anche solo per l’ampio spazio che viene dedicato al contesto storico-politico.
Pubblicato in Libri
Etichettato sotto
Pagina 11 di 14

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy