LA DISFIDA
Disfida Matematica (secondo l’enciclopedia Treccani): gara pubblica, in voga nel sec. 16°, nella quale un matematico sfidava un altro matematico a risolvere un dato problema, mediante un apposito cartello d’invito (cartello di matematica disfida).
Nel 1526 muore Scipione Dal Ferro, che aveva scoperto una formula risolutiva per le equazioni di terzo grado. La formula non era stata resa pubblica, ma era nota agli allievi di Dal Ferro. Tra essi, Antonio Maria del Fiore, detto Fior, che decise di appropriarsene.
Tartaglia, nel 1535, trovò una formula risolutiva per le equazioni di terzo grado che permetteva di risolvere più casi rispetto alla formula di Fior. Quest’ultimo sfidò Tartaglia in una disfida, che fu vinta da Nicolò Tartaglia.
Il matematico iniziò a guadagnare fama, ma scelse di mantenere segreta la formula, per poterla comunicare lui stesso in una propria opera. Tuttavia, un intellettuale del tempo, Gerolamo Cardano, lo convinse a rivelargli la formula risolutiva, con la promessa di mantenerla segreta. Cardano però rivelò la formula al suo miglior allievo, Ludovico Ferrari, che grazie ad essa trovò il procedimento per svolgere le equazioni di quarto grado.
Cardano voleva pubblicare la scoperta di Ferrari e Tartaglia, ma era vincolato dal patto con quest’ultimo. Tuttavia, Cardano venne a sapere che la formula risolutiva di Tartaglia era già stata scoperta da Scipione Dal Ferro, perciò pubblicarla non sarebbe stato un tradimento nei confronti dell’amico.
Nel 1545 venne così pubblicato l’Ars Magna di Cardano, testo che conteneva le formule risolutive relative alle equazioni di terzo e quarto grado, compresa la formula scoperta da Tartaglia.
Egli, infuriato e sentendosi tradito dall’amico, nel 1546 pubblicò un libro, Quesiti et inventioni diverse, in cui esponeva la propria versione di tutta la vicenda.
Cardano non replicò all’attacco subìto, lasciando che a farlo per lui fosse l’allievo Ferrari. Il 10 febbraio 1547, Ferrari lanciò a Tartaglia un pubblico cartello di disfida matematica, caratterizzato da toni sprezzanti e denigratori.
La resa dei conti arrivò il 10 agosto 1548, giorno in cui Tartaglia e Ferrari incrociarono le armi matematiche a Milano, nella chiesa di Santa Maria del Giardino.
Spinto dal supporto della sua “gran comettiva”, Ferrari appariva in grado di esporre le proprie argomentazioni con rapidità, sicurezza e piena padronanza di metodi e formule, dimostrando di possedere una preparazione matematica ben superiore alle attese di Tartaglia. Il quale, a suo dire innervosito e deconcentrato dal pubblico, non sembrava riuscire a tenere testa al rivale. E dopo solo un giorno di discussioni, abbandonò la contesa.
Due testi nella biblioteca del conte Tadini mostrano l’interesse per le scienze matematiche nel Settecento nelle università e nelle accademie militari.
Leonardo Salimbeni
Ricerche sull'equazioni di terzo grado
Verona: Dionigi Ramanzini, 1782
Accademia Tadini, Lovere, Biblioteca storica.
Leonardo Salimbeni approfondisce gli studi presso il Collegio Militare di Verona. In quella sede, ottiene ottimi risultati “per prontezza, acume e penetrazione nell’apprendere le scienze matematiche e le discipline militari”. I risultati dei suoi studi saranno esposti in numerose pubblicazioni.
Il volume esposto, un opuscolo di ricerche relative alle equazioni di terzo grado suddiviso in due capitoli; nella vetrina successiva (► vetrina 4) è presentato un trattato di balistica.
Giuseppe Cassella
Saggio d'un tentativo per risolvere l'equazioni di tutt'i gradi.
Napoli: Pietro Perger, 1788.
Accademia Tadini, Lovere, Biblioteca storica.
Giuseppe Cassella, astronomo e matematico, è stato professore di Matematica all’Università di Padova, poi di Astronomia nel Real Collegio della Marina e di Meccanica nel Real Collegio di Artiglieria e nella Regia Università degli Studi a Napoli.
LEONARDO SALIMBENI
Leonardo Salimbeni nacque a Spalato nel 1752, figlio di un militare veneziano di alto rango, Giovanni Salimbeni, e fratello maggiore di Sebastiano Salimbeni.
Nel 1764 si iscrisse al collegio militare di Verona.
Per affari militari viaggiò a Zante e a Zara, mentre per il suo talento scientifico, il direttore del collegio Antonio Moser de Filseck lo condusse in un viaggio in Dalmazia e Albania.
Nel 1794 divenne direttore del collegio come suo padre prima di lui.
Nel 1783 sposa Alfonsa Moronati, sorella di Libera, moglie del conte Luigi Tadini.
Nel 1791 ampliò la dogana del commercio di Verona e divenne un membro della Società Italiana, detta dei Quaranta, nello stesso periodo in cui ne fu un socio Alessandro Volta.
Conobbe Isabella Teotochi, nata Albizzi, nel 1778 e fece parte del suo salotto culturale al quale partecipavano personaggi del calibro di Foscolo, Byron e Canova. Viaggiò con Isabella a Roma dove ebbe l’opportunità di visitare lo studio di Canova e di conoscere Vincenzo Monti.
Il 27 maggio 1796 incontrò a Brescia Napoleone, che descrisse in una lettera-resoconto.
A Verona Bonaparte propose a Salimbeni di dirigere una scuola del genio militare e dell'artiglieria. Il comandante francese lo convinse a trasferirsi a Milano, sede della Repubblica Cisalpina.
Nominato direttore della scuola militare ebbe come allievi suo figlio Giovanni e Giovanni Foscolo, fratello del poeta.
Dopo la discesa delle truppe austro-russe in Italia nel 1800, i beni di Leonardo Salimbeni vennero confiscati.
Sebbene nel 1801 Salimbeni, insieme al figlio Giovanni, avesse parteggiato per il ritorno dei Francesi in Italia, rifiutò un incarico alla scuola militare di Francia e all'Università di Modena.
Dopo l’ordine di Napoleone di deporre ed eventualmente fucilare il fratello Sebastiano, Leonardo si rifugiò a Nonantola.
Il fratello Sebastiano morì nel 1807, il padre Giovanni l’anno successivo e il figlio Giovanni nel 1811.
Mentre Salimbeni, lieto della caduta di Napoleone sistemava la sua proprietà a Nonantola, il suo secondogenito Sebastiano progettava il palazzo delll’Accademia Tadini a Lovere per lo zio: il conte Luigi Tadini.
Leonardo Salimbeni morì a Modena nel 1823.
RICERCHE SULL’EQUAZIONI DI TERZO GRADO DI LEONARDO SALIMBENI
Il volume di Leonardo Salimbeni, in seguito al frontespizio, presenta una dedica: “A sua eccellenza il signor ANTONIO ZEN Savio di terra ferma alla scrittura.” Salimbeni dona l’operetta ad Antonio Zen, premettendo che il fine del dono non sia la ricerca di Approvazione, poiché non reputa la propria opera importante abbastanza da richiederla; né di Patrocinio, poiché già ne gode; né di Premj, poiché reputa la propria anima abbastanza elevata da non necessitare di una prova fisica delle proprie capacità; né di Difesa, poiché riconosce che ogni autore debba essere in grado di custodire la propria opera senza aiuto esterno. Salimbeni continua il discorso affermando, perciò, che resta dunque che per solo contrassegno di Gratitudine questo tenue dono vi dedichi e consacri. In seguito, ringrazia l’Eccellentissimo Signore per il sostegno ricevuto e giustifica la scelta di donare questo opuscolo con la passione dimostrata da Antonio Zen per gli Studj di Matematica. Salimbeni conclude con lodi ad Antonio Zen.
Seguono dunque la prefazione e gli effettivi capitoli dell’opera
- Capitolo primo: Che tratta di quell’equazioni cubiche che hanno tutte e tre le radici reali sotto forma reale, disuguali e irrazionali
- Capitolo Secondo: Dove si espone un metodo pratico per la risoluzione dell’equazioni numeriche di terzo grado, che hanno tutt’e tre le radici reali.
Il volume si conclude con la “tavola dell’operazione trigonometrica”.
Opera in mostra: Opuscoli di geometria e balistica di Leonardo Salimbeni capitano d'ingegneri e professore di matematica nelle scuole militari di Verona.
In Verona : per gli eredi di Marco Moroni, 1780.
Accademia Tadini, Lovere, Biblioteca storica, ATL H.II.1
OPUSCOLI DI VARIO ARGOMENTO DI GIUSEPPE CASSELLA
Il volume è un unico opuscolo, chiamato anche “Saggio d'un tentativo per risolvere l'equazioni di tutti i gradi”. In questo opuscolo Cassella si dedica alla spiegazione delle sue ricerche, studi e calcoli per trovare un nuovo modo, una nuova formula risolutiva che vada bene per la risoluzione di equazioni di tutti i gradi superiori al terzo, siccome la formula per queste ultime era già stata scoperta nel '500 da Tartaglia.
Opera in mostra: Opuscoli di vario argomento di Giuseppe Cassella regio astronomo della Marina dell'Accademia delle scienze, lettere ed arti di Padova. Opuscolo 1. saggio d'un tentativo per risolvere l'equazioni di tutt'i gradi.
Napoli: nella stamperiadi Pietro Perger, 1788. [due copie]
Accademia Tadini, Lovere, Biblioteca storica, H.II.2