Venerdì, 02 Agosto 2013 21:15

Il matematico si diverte

TRAMA: 
«In fondo sono proprio gli indovinelli e gli enigmi i modi più indolori e stimolanti di avvicinare ragionamenti in cui la matematica è nascosta dietro le quinte, e non può dunque spaventare o preoccupare, perché non se ne percepisce neppure la presenza.» Con queste parole, Piergiorgio Odifreddi – nell’interessante prefazione – ci parla della ricchezza insita negli enigmi e nei giochi matematici presentati nel libro. E, in effetti, lo stesso Peiretti ci fornisce tre motivazioni che l’hanno spinto a scrivere questo libro: 
1. “Per portare in primo piano il lato divertente della matematica”. E il divertimento non manca, tra le pagine di questo libro: basta lasciarsi sfidare dai giochi proposti e provare a risolverli per conto proprio.
2. “Per dimostrare come attraverso il gioco si arrivi direttamente alla matematica”. Infatti, molti degli autori di giochi erano a loro volta matematici.
3. Per dimostrare come la matematica “sia essa stessa un gioco”. Affermazione sicuramente discutibile per molti, ma che dovrebbe diventare una profonda verità soprattutto per gli insegnanti di matematica: vivendola come gioco, forse sarebbe più facile trasmetterne il lato divertente.
Per questi motivi, “succede talvolta che il matematico parta da un semplice gioco mediante il quale arriva poi a scoprire nuovi teoremi e nuove, fondamentali, teorie”. 
Ogni capitolo, dedicato a un autore di giochi matematici, è strutturato in modo da presentarci innanzi tutto l’autore dei giochi, con alcune notizie biografiche e curiosità che lo riguardano, poi ci sono alcune importanti scoperte, alcuni giochi matematici proposti al lettore, le soluzioni e, eventualmente, delle appendici in cui i problemi vengono ulteriormente approfonditi o risolti matematicamente. Alla conclusione del capitolo, possiamo trovare un’ampia bibliografia, per approfondire ulteriormente l’argomento.
Gli autori proposti sono 18 e sono disposti in ordine cronologico: si comincia con AHMES, uno scriba dell’Antico Egitto, divenuto famoso per il papiro di Rhind, che ha copiato “al tempo del re dell’Alto e del Basso Egitto Nemaatre”. Il secondo capitolo è dedicato a PITAGORA e all’aritmogeometria, il terzo a ARCHIMEDE, il più grande matematico dell’antichità, e vengono proposti alcuni interessanti giochi geometrici; nel quarto capitolo, troviamo ALCUINO, monaco e poeta, vissuto nell’VIII secolo, autore della prima raccolta in lingua latina di problemi divertenti, noto ai più per il problema della capra e dei cavoli. BACHET, vissuto nel XVII secolo, è un personaggio minore nella storia della matematica, ma di grande importanza nella storia dei giochi. Il sesto capitolo è dedicato al grande EULERO, che per il divertimento e l’istruzione di figli e nipoti proponeva problemi matematici che dimostrano una grande capacità divulgativa: i numeri primi e la topologia sono gli argomenti dei giochi proposti da Peiretti. MÖBIUS, che scoprì il proprio amore per la matematica grazie a Gauss, è ricordato soprattutto per il suo anello, dal quale possono nascere parecchi problemi interessanti. LEWIS CARROLL, celebre come autore di “Alice nel paese delle meraviglie”, non è un grande matematico, ma ha una buona conoscenza della materia. SAM LOYD è stato riconosciuto come il miglior enigmista d’America: è noto soprattutto per il Gioco del 15 e bellissima è la rassegna di problemi divertenti proposta da Peiretti. Interessante la citazione che conclude il capitolo: “Quello che si studia con diletto non sarà mai più dimenticato, ma la conoscenza non si può mettere in testa a forza. L’insegnante non deve insegnare regole a memoria; ogni cosa dev’essere spiegata in modo tale che gli studenti possano riformulare le regole nel proprio linguaggio. L’insegnante che insegna soltanto regole sarà bravo unicamente per addestrare pappagalli.” LUCAS, ottimo matematico, è noto per aver inventato il gioco della Torre di Hanoi, reperibile in qualsiasi negozio di giochi. BALL, matematico, è noto per la Mathematical Recreations and Essays, un’enciclopedia dei giochi matematici, ancora attuale e di grande interesse. Nel dodicesimo capitolo, si parla di DUDENEY, che – secondo Martin Gardner – “potrebbe essere considerato il più grande enigmista che sia mai esistito”: il suo libro più noto è The Canterbury Puzzles, che ha come protagonisti i pellegrini dei Canterbury Tales di Chaucer. HEIN è un poeta e matematico danese, noto – oltre che per i suoi aforismi contro il nazismo – per il Cubo Soma, un gioco matematico formato da sette pezzi con i quali si deve ricostruire un cubo. Il quattordicesimo capitolo è dedicato a MARTIN GARDNER, il più grande esperto in giochi matematici del XX secolo, autore di oltre un centinaio di libri e di migliaia di articoli dedicati a giochi e problemi divertenti di matematica. FEYNMAN è stato uno degli scienziati più popolari: ha partecipato al progetto Manhattan e ha vinto il premio Nobel nel 1965 per i suoi studi sull’elettrodinamica quantistica. Nel capitolo a lui dedicato, sono descritte le strisce di carta note come esaflexagoni, portate al successo da Gardner, e l’intrigante puzzle di Feynman. PENROSE, uno dei più noti scienziati inglesi, è sempre stato affascinato dalle tassellature, in particolare da quelle non periodiche, che hanno permesso di chiarire la disposizione degli atomi nei quasicristalli. GOLOMB, matematico e ingegnere, è diventato popolare per i suoi studi sui polimini, noti ai più grazie al videogioco di Tetris. Il libro si conclude con i numeri surreali di CONWAY, uno dei più grandi matematici viventi: egli considera la matematica “il più bel gioco inventato dall’uomo”. Uno dei giochi più affascinanti da lui inventato è il Gioco della Vita, diventato popolare grazie alle versioni per computer.
 
COMMENTO:
Lettura stimolante, che offre un vasto repertorio di giochi con i quali misurarsi. Certo, non si può leggere come un romanzo, perché, come ci dice l’autore stesso: «È bene tener presente che per capire la matematica, anche soltanto di gioco, non è sufficiente “leggere”, ma è necessario “fare” matematica, con esercizi e riflessioni personali.»
Purtroppo, nel libro sono presenti numerosi errori di stampa, che possono indurre in errore nella soluzione dei giochi. Inoltre, alcune soluzioni (poche, per la verità) non sono spiegate: viene dato solamente il risultato. Nonostante questo, la lettura è consigliatissima a tutti!

Informazioni aggiuntive

  • Autori: Peiretti Federico
Letto 7213 volte Ultima modifica il Martedì, 13 Agosto 2024 21:16

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy