Giovedì, 01 Agosto 2013 13:43

C'era una volta un paradosso

TRAMA:
I paradossi presentati sono di vario tipo: quelli delle arti figurative, come i trompe l’oeil e la prospettiva, quelli della religione, una delle idee astratte paradossali sulle quali si basa la nostra cultura, quelli della politica, come la dimostrazione di Amartya Sen (1970), con la quale stabilisce che in una società al massimo un individuo può avere dei diritti!
Interessante è la trattazione del paradosso del mentitore di Epimenide di Creta (VI sec. a.C.), che ha avuto nel corso dei secoli innumerevoli peripezie filosofiche e letterarie, fino a reincarnarsi nel paradosso degli insiemi di Russell, diverso nella forma rispetto all’originario, ma simile nella sostanza. I paradossi di Zenone (V sec. a.C.), che esprimono l’impossibilità del movimento, danno il titolo al capitolo “La corsa nel tempo della tartaruga” e la loro storia si snoda attraverso numerosi personaggi, fino ad arrivare alla raffigurazione visiva del paradosso da parte di Escher.
Matematica e scienza vengono confrontate proprio nel diverso ruolo che i paradossi hanno al loro interno: la differente direzione, dagli assiomi ai teoremi per la matematica e dai dati sperimentali alle leggi per la scienza, consente di considerare l’induzione matematica come sempre vera, a differenza dell’induzione scientifica, anche se nemmeno l’induzione matematica è immune al paradosso. Come viene ben spiegato nell’ultimo capitolo, in matematica il paradosso può generare, a seguito di un’ulteriore revisione, una dimostrazione: così, il paradosso dell’incommensurabilità della diagonale del quadrato rispetto al lato è diventato la dimostrazione dell’irrazionalità di radice di 2; i paradossi di Zenone diventano la dimostrazione della convergenza di una serie infinita da parte di Gregorio di San Vincenzo; il paradosso del mentitore diventa la dimostrazione di Gödel dell’indimostrabilità di alcune verità…
 
COMMENTO:
Risultano particolarmente interessanti gli ultimi due capitoli, che presentano un’interpretazione completamente nuova dei paradossi: come già detto, in matematica possono diventare delle dimostrazioni, che aprono la strada a nuovi ambiti. Interessanti sono anche i due capitoli densi di filosofia, come la Storia del paradosso del mentitore e l’evoluzione del paradosso della tartaruga di Zenone. 
Il libro merita di essere letto per i numerosi ambiti che esplora e la sottile ironia, sempre presente nelle opere di Odifreddi, alleggerisce un argomento non sempre facile. 
 
"Spesso le crisi dei paradigmi e le scintille per le rivoluzioni matematiche sono appunto stimolate e innescate dai paradossi. Al loro apparire essi provocano tragedie personali e collettive. Ma col passare del tempo, magari dopo millenni, i paradossi finiscono per essere integrati nel corpo della matematica, occupandone non di rado un posto d’onore."

Informazioni aggiuntive

  • Autori: Odifreddi Piergiorgio
Letto 8883 volte Ultima modifica il Sabato, 10 Agosto 2024 16:17

Lascia un commento

Assicurati di aver digitato tutte le informazioni richieste, evidenziate da un asterisco (*). Non è consentito codice HTML.

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy