TRAMA:
“Se qualcosa può andar male, andrà male”, sentenzia la legge di Murphy. Come dice l’autore – cercando di appurare se esista una spiegazione razionale – questa legge, assieme ai suoi corollari, ci assedia da ogni parte. Innanzi tutto, dobbiamo sapere che la legge di Murphy è figlia del mondo moderno e della sua incredibile complessità: i nostri antenati avevano una vita molto più semplice, noi abitiamo un mondo molto più complesso, eppure il nostro cervello non si è modificato di molto. Là dove la mentalità paleolitica si incontra con il mondo moderno, spunta la legge di Murphy, ovvero: diventiamo vittime di noi stessi quando ci muoviamo nell’età della plastica con una mentalità da età della pietra.
Un’ottantina sono le spiegazioni razionali di fenomeni sconcertanti ma frequenti: la nostra mente vede un mondo che cospira contro di lei, mentre il mondo è del tutto innocente.
Non dimentichiamo che il nostro cervello riceve un milione di impulsi ogni decimo di secondo, perciò con alcuni prova a indovinare, senza interpretarli realmente e a volte è sviato dalle illusioni ottiche, oppure dai ricordi che interferiscono con il presente. Infine, nel momento in cui il nostro cervello deve mettere insieme i pezzi, come si fa con le tessere di un puzzle, scopriamo che siamo dei perfetti asini e la legge di Murphy ci ostacola: come i bambini, cerchiamo di far combaciare pezzi che sono lontani. Sono le nostre passioni a farci vedere la realtà nella maniera in cui la vediamo e a farcela sembrare, a volte, piuttosto strana.
“Alla maggior parte di noi l’allenamento matematico manca, sicché Murphy impazza”.
COMMENTO:
Regala una spiegazione scientifica ad alcuni luoghi comuni e smaschera l’infondatezza di alcune convinzioni, analizzando gli eventi con una mentalità matematica. Il libro è semplice, divertente e, al termine di ogni capitolo, presenta una sintesi, che aiuta a chiarire ancora meglio i punti salienti del discorso. Le numerose vignette, inoltre, aiutano a focalizzare ancora meglio i concetti chiave, colpendo la nostra fantasia.
TRAMA:
«È stata una vita straordinaria, la sua. Nato in una foresta pluviale nella parte più a sud del globo terrestre, Ernest Rutherford era, detto molto semplicemente, un genio. Ha cambiato per sempre il modo in cui vediamo il mondo e noi stessi. È stato il primo a mostrare che gli elementi non sono immutabili: possono trasformarsi in altri elementi, naturalmente, secondo quel processo per il quale usiamo le parole “decadimento radioattivo” e “tempo di dimezzamento”. Ha scoperto la struttura nucleare dell’atomo, dando inizio a un’età “eroica” per la fisica. E ha “fatto l’atomo a pezzi”. Nel 1932 lui e i suoi “ragazzi” furono i primi a farlo, o, più precisamente, furono i primi a frantumare il nucleo dell’atomo e a svelare e liberare forze mai neppure immaginate.»
Grazie ad una borsa di studio istituita nel 1851, l’anno dell’Expo londinese, Rutherford – nato il 30 agosto del 1871 in Nuova Zelanda – ottenne, nel 1895, di continuare i suoi studi in Inghilterra. Collaborando con Thomson, si occupò del passaggio di elettricità nei gas. Ovunque gli scienziati stavano trovando, o comunque cercando, gli esperimenti e le teorie matematiche giuste per descrivere e determinare un mondo fino a quel momento inaccessibile all’occhio umano e ai microscopi. Thomson aveva ideato un modello di atomo, il più accreditato durante il primo decennio del XX secolo, ma nuovi esperimenti sembrarono suggerire che l’atomo consistesse principalmente di spazio vuoto.
A Rutherford fu offerta una cattedra di fisica sperimentale a Montreal: qui il fisico avrebbe avuto una posizione di responsabilità e avrebbe potuto dedicare più tempo alla ricerca. Collaborando con Soddy, assistente nel dipartimento di chimica, riuscirono a provare l’ipotesi della disintegrazione atomica come spiegazione della radioattività, dicendo cose mai dette prima, ma l’isolamento coloniale di Montreal rendeva più difficile accettare la rivoluzione di Rutherford a molti. Ottenne il premio Nobel nel 1908, «per le sue ricerche relative alla disintegrazione degli elementi e alla chimica delle sostanze radioattive».
Il 24 maggio del 1907, ebbe finalmente l’occasione di tornare in Europa in via definitiva: a Machester, il laboratorio più importante in Inghilterra dopo il Cavendish, dove ebbe in eredità un team di laboratorio invidiabile.
Rutherford puntava a guardare all’interno dell’atomo, del quale si conoscevano solo gli elettroni, per la cui scoperta era stato insignito del Nobel Thomson nel 1906. All’inizio di dicembre del 1910, Rutherford aveva chiara in mente l’immagine dell’atomo e di quello che nel 1913 battezzò nucleo: intuì che, in proporzione, il nucleo nell’atomo era come una capocchia di spillo al centro della cattedrale di St. Paul. Rutherford espose i suoi risultati in un articolo il 7 marzo del 1911. Il modello fu accolto come uno dei tanti, ma non convinse: appariva instabile e solo Bohr, dopo qualche mese, mostrò come potesse essere stabile. Il modello di Rutherford-Bohr, frutto di esperimenti ispirati e teorie geniali, rappresentava allo stesso tempo una fine e un inizio: l’inizio della fine della fisica da bancone di Rutherford, quella fatta con ceralacca e cordini. La fisica classica, su cui si poteva letteralmente mettere le mani, stava lasciando il passo alle lavagne; i nuovi esperimenti, tesi a “entrare” nel nucleo, avrebbero richiesto macchine gigantesche in grado di accelerare e manipolare le forze e i corpi descritti e dominati per primi da Isaac Newton, Michael Faraday, J.J. Thomson e dallo stesso Rutherford.
La prima guerra mondiale toccò pesantemente i giovani impegnati nel laboratorio di Rutherford: chi morì in azione, chi rimase ferito, chi, come Chadwick venne internato in un campo di prigionia tedesco. Rutherford invece sviluppò ciò che ora chiamiamo sonar.
Nel marzo del 1919, Thomson abbandonò la direzione del Cavendish e Rutherford ottenne il suo posto.
Nel 1920, Rutherford chiamò protone la particella che usciva dal bombardamento dei nuclei di azoto con le particelle alfa.
Nel frattempo, si era aperta una grande competizione internazionale per frantumare l’atomo e farlo esplodere. Erano impegnati: il laboratorio del Cavendish, la Carnegie Institution di Washington, la University of California, l’Institute of Technology di Pasadena e il Kaiser Wilhelm Institute di Berlino.
Il 1932 fu l’anno dei trionfi per il team di Rutherford: Chadwick, scoprì il neutrone e Walton e Cockcroft videro per la prima volta l’atomo fatto a pezzi, con i nuclei di litio, di massa 7, colpiti da un protone, di massa 1, che si disintegravano in due particelle alfa (nuclei di elio), di massa 4. L’atomo di litio era stato spezzato. Nella violenza dell’evento una parte della massa – 0,02 unità di peso atomico – era stata trasformata in energia. Numericamente si trattava della quantità prevista dalla formula E = mc2. L’energia prodotta era uguale alla massa moltiplicata per la velocità della luce al quadrato. Era la prima prova sperimentale della teoria della relatività di Albert Einstein del 1905.
L’ascesa al potere di Hitler aveva indotto alla fuga millecinquecento scienziati tedeschi, epurati dalle università e dai laboratori: Rutherford spese parecchie energie per trovare un lavoro agli studiosi tedeschi, che lui aveva ribattezzato “gli studiosi erranti”.
Dopo le vittorie conseguite, Rutherford cominciò ad allontanarsi dal Cavendish, prendendosi lunghe pause per stare con i nipoti (avuti dall’unica figlia, morta nel 1930 dando alla luce il quarto figlio): era chiaro che il suo mondo stava cambiando.
Morì il 19 ottobre del 1937, dopo una breve agonia in seguito a una caduta. Le ceneri di Rutherford riposano nell’abbazia di Westminster, vicino alla tomba di sir Isaac Newton.
COMMENTO:
Leggendo il libro, si ha a volte l’impressione di sentir tuonare la voce di Rutherford, nei numerosi aneddoti che lo vedono come protagonista, che ci guidano alla scoperta del mondo subatomico. Grande uomo, grande personaggio, di un’intelligenza eccezionale e vivace, è stato anche un grande maestro, perché numerosi furono i suoi collaboratori che vinsero il premio Nobel: Frederick Soddy (chimica, 1921), Niels Bohr (fisica, 1922), Francis William Aston (chimica, 1922), Paul Dirac (fisica, 1933), James Chadwick (fisica, 1935), Georg von Hevesy (chimica, 1943), Otto Hahn (chimica, 1944), Edward Appleton (fisica, 1947), Patrick Blackett (fisica, 1948), John Cockcroft ed Ernest Walton (fisica, 1951), Pyotr Leonidovich Kapitsa (fisica, 1978).
Questo libro ci racconta la sua vicenda personale, le vicende di questi giovani studiosi e, soprattutto, il cammino della fisica nei primi anni del XX secolo, quando è passata da attività da bancone, con semplici esperimenti realizzabili in piccoli laboratori, agli esperimenti con gli acceleratori di particelle.
Il libro è semplice e coinvolgente e chiunque può affrontarne la lettura, pur non avendo conoscenze specifiche.
TRAMA:
Questa è la storia di un matematico, Armand Duplessis, che aveva davanti a sé un brillante futuro, ma che ha scelto di impegnare la propria vita nel tentativo di dimostrare la congettura di Goldbach. I singoli capitoli sono quasi separati, visto che il protagonista muore ben tre volte e ce lo spiega l’autore nell’introduzione: La morte del protagonista in un capitolo non incide, né deve farlo in alcun modo, sul suo comportamento nel capitolo seguente. Lo si ritrova vispo come una funzione che, superato qualche valore non ammesso, risuscita in un batter d’occhio: affondata verso – ∞ un istante fa, ora si avvicina a + ∞, pronta a nuovi asintoti.
Nato il 16 aprile 1964, ovvero 16.4.64, che potrebbe anche essere letto come 16 x 4 = 64 o come 24.22.26, Armand Duplessis sente che le potenze di 2 hanno in qualche modo segnato la sua vita. A sedici (=24) anni, seguì la serie televisiva Gli enigmi che sfidano l’umanità, durante la quale venne presentata la congettura di Goldbach: ogni numero pari è la somma di due numeri primi. Quella stessa sera, a tavola, annunciò la sua decisione. Sarebbe diventato un matematico. Non un professore di matematica, intendiamoci: un matematico. Perché aveva intenzione di essere il primo a dimostrare la congettura di Goldbach.
Scegliendo di dedicarsi alla teoria dei numeri, venne assunto dall’università di Lione: agli inizi, Armand era uno di quei pochissimi ricercatori che si mostrano all’altezza delle grandi speranze riposte in loro. In moltissimi ambiti della teoria dei numeri i suoi risultati furono stupefacenti, le sue intuizioni decisive, le sue pubblicazioni numerose, le sue idee fondamentali. Ma a 32 (=25) anni, Armand decise di dichiarare che avrebbe proseguito le sue ricerche nel tentativo di dimostrare la congettura di Goldbach.
Dopo essersi dedicato instancabilmente, in ogni momento della giornata, alla congettura, un giorno Armand decise di dimenticarsene, di liberare la propria mente, nel tentativo di pensarci meglio. Esattamente come fece Poincaré che, dopo essersi concentrato molto tempo e inutilmente su un problema, decise di partire per una gita e, mettendo piede sull’omnibus di Coutances, riuscì a trovare la soluzione. Armand sperava di trovare nell’accensione del proprio computer ciò che Poincaré aveva trovato salendo sull’omnibus. Ma non successe nemmeno questo… ha luogo semplicemente la sua seconda morte, mentre si smaterializza osservando la propria immagine.
Dopo la sua morte, i colleghi si trovano a farne un “elogio funebre” un po’ particolare, visto che commentano anche cinicamente la scelta di Armand di dedicare tutta la propria vita a una congettura così difficile: «Avrebbe potuto fare della grande matematica. Forse avrebbe potuto farne, voglio dire. Forse. Non lo sapremo mai, adesso. Ma se c’è una cosa certa, è che si è ostinato stupidamente».
COMMENTO:
Non bisogna cominciare la lettura di questo libro aspettandosi un romanzo normale, con un inizio e una fine. È un romanzo dai molti inizi e dalle tante fini – come dimostrano le tre morti del protagonista – un romanzo fatto in realtà da tanti singoli racconti un po’ fantastici, che descrivono però molto bene la vita di un matematico.
Non mancano numerosi agganci con la realtà matematica: i colleghi di Armand hanno, ad esempio, nomi che imitano quelli dei celebri matematici e cioè Potagore (Pitagora), Pacaré (Poincaré), Barbacchi (Bourbaki), Couchy (Cauchy), Bèrel (Borél), Lebogue (Lebesgue). Simpatica inoltre è la descrizione della presunta scoperta, da parte della moglie di Armand, dell’amante del matematico, secondo una deduzione fatta dopo aver rilevato l’improbabile ricorrenza dei multipli di 99.
Il testo è scorrevole e divertente e, verso la fine, l’autore ci parla anche di Goldbach e della comparsa della famosa congettura durante uno scambio epistolare con Eulero, avvenuto il 7 giugno 1742, ovvero 7.6.42… come nel caso della data di nascita del protagonista: 7 x 6 = 42.
TRAMA:
Nel diciottesimo secolo, la fisica, che riguardava solo i fenomeni meccanici, era analizzata solo dal punto di vista matematico. Più avanti, il calore e l’elettricità vennero spiegati con l’esistenza di fluidi imponderabili, ma si trattava di speculazioni qualitative, separate dalla scienza esatta ovvero dalla meccanica, nonostante i diversi tentativi di trattazioni matematiche. Oersted (1820) e Faraday (1831) riuscirono a collegare, con i loro esperimenti, le forze elettriche e quelle magnetiche; Joule stabilì l’equivalenza tra calore e lavoro meccanico e nel 1847 Helmholtz trattò i fenomeni di meccanica, calore, luce, elettricità e magnetismo come differenti manifestazioni dell’energia. Il modo in cui i problemi fisici della luce, del calore e dell’elettricità venivano trattati era tale da consentirne un’analisi matematica e ciò favorì molto l’unificazione della fisica. Ebbero particolare importanza gli esperimenti di Joule: mentre i fisici del diciottesimo secolo avevano considerato i processi meccanici e quelli non meccanici come processi relativi a differenti sistemi fisici, la dimostrazione dell’equivalenza tra lavoro meccanico e calore fatta da Joule negli anni Quaranta dell’Ottocento consentì, insieme alla legge della conservazione dell’energia, l’unificazione dei processi termici e meccanici. E così negli anni Cinquanta e Sessanta Thomson e W.J. Macquorn Rankine elaborarono un nuovo modello della teoria fisica in cui il concetto fondamentale era quello di energia, tentando di rendere più chiara la base matematica e fisica del principio di conservazione dell’energia.
Il concetto di campo emerse intorno al 1850, nella fisica britannica, quando Thomson e Maxwell formularono le teorie dell’elettricità e del magnetismo. La concezione meccanicistica della natura ricevette un ulteriore supporto negli anni Cinquanta e Sessanta con lo sviluppo della teoria cinetica dei gas elaborata da Clausius e Maxwell, nella quale il moto delle particelle era descritto come fenomeno meccanico. I dubbi sorti dopo questa spiegazione indussero Maxwell a introdurre il paradosso del «demone», per dimostrare che le interpretazioni molecolari dovevano basarsi su un’analisi statistica del moto di un immenso numero di molecole.
Con l’enunciazione dell’equivalenza tra massa ed energia e l’abbandono di spazio e tempo assoluti, la teoria della relatività di Einstein segna una «rivoluzione» nella storia della fisica: per quanto l’accento che si pone generalmente sulla discontinuità tra fisica classica e moderna sia appropriato quando serve a distinguere le assunzioni filosofiche della fisica sette-ottocentesca dalle dottrine relativistiche e indeterministiche della fisica del nostro secolo, e a distinguere una fisica prima e una fisica dopo lo sviluppo della meccanica quantistica negli anni Venti, questa frattura è esagerata e trascura, in un modo che risulta alla fine fuorviante, la continuità di idee che pur esiste tra il periodo classico e il periodo moderno.
COMMENTO:
Una storia della fisica approfondita ed interessante, che può essere affrontata con le conoscenze che si sono acquisite con la scuola superiore. Il linguaggio non rende la lettura sempre agevole, ma con un po’ di concentrazione ed attenzione si può capire ogni cosa.