Visualizza articoli per tag: circonferenza

Sabato, 16 Gennaio 2021 22:06

7 gennaio 2021

Verifica di geometria, classe seconda liceo scientifico.
Argomento: circonferenza, poligoni inscritti e circoscritti.

Durata: 60 minuti.

Pubblicato in Esercizi
Domenica, 25 Ottobre 2020 19:51

22 Ottobre 2020

Verifica di geometria, classe seconda liceo scientifico.
Argomento: geometria euclidea, circonferenza.

Durata: un'ora.

Pubblicato in Esercizi
Lunedì, 06 Luglio 2020 00:00

Salendo su un foglio di carta

«Salendo su un foglio di carta» è stato pubblicato dalla casa Editrice Aracne a gennaio di quest’anno. Gli autori sono Alfredo Marzocchi e Stefano Martire, insegnante di fisica matematica presso l’Università Cattolica del Sacro Cuore di Brescia il primo e giovane laureato in matematica e dedito alla divulgazione il secondo.

Il libro, di facile lettura anche per i meno esperti, ha un carattere divulgativo, ma un’originalità mai vista. Ogni capitolo è a sé stante e ogni capitolo è diverso, non solo per l’argomento ma soprattutto per la strategia narrativa scelta: «abbiamo usato stili diversi, inserito parti narrative, mantenendo alcune zone dove puoi trovare una spiegazione classica, però cercando anche di divertirti un po’». Protagoniste del libro sono le idee della matematica, con i loro «risultati meravigliosamente sorprendenti». L’obiettivo degli autori è quello di rispondere alla domanda del liceale medio: “Ma perché studio matematica?” e così il primo capitolo non poteva che essere dedicato alla dimostrazione dell’infinità dei numeri primi. Nel secondo capitolo, troviamo Euclide che rincorre una bella ragazza sulla spiaggia, ma non riesce a non pensare ai numeri primi. Il terzo capitolo è dedicato alla probabilità e in particolare al problema dei compleanni, ma da un punto di vista diverso: la protagonista è la prof.ssa Bernelli, che ha commesso un errore, dimenticando, nel calcolo, la probabilità condizionata. La magia della matematica è protagonista del quarto capitolo, con il teorema del fogliettino (che dà il titolo al libro) e l’innalzamento della corda che chiude, come con un lazo, la Terra. Il quinto capitolo è ambientato nello spazio e fa riferimento ad un gruppo di pianeti sferici. Il sesto capitolo è un processo alla matematica e il suo avvocato difensore è nientemeno che Richard Dedekind, che cercherà di dimostrare come la matematica «non abbia “inventato numeri” finalmente a se stessi, ma con il solo scopo di definire, chiarire ed estendere l’idea di operazione». Fortunatamente la Corte la proclama innocente per non aver commesso il fatto, ma colpevole «di fuorviante ingenuità nell’attribuzione dei nomi degli insiemi numerici» e per questo condannata «a sopportare titoli di giornali» non sempre sensati. Il capitolo si conclude con la dimostrazione della formula di Eulero, una delle formule più belle della matematica. Il settimo capitolo è dedicato alle dimensioni, l’ottavo al teorema di Pitagora, ma indagato con la geometria del Taxi invece che con quella euclidea e il nono cerca di mostrare come le intuizioni, a volte, in matematica siano fuorvianti: «”Bisogna avere intuizione per andare bene in matematica”, dicono molti, ma esattamente a che cosa serve l’intuizione nella matematica? È davvero utile?». Il decimo capitolo avrà un posto speciale nelle mie lezioni di analisi di quinta liceo d’ora in avanti, perché spiegare le derivate usando le crocchette di un cane è davvero originale e divertente.

Come si è intuito, nel libro non mancano le dimostrazioni, ma sono spiegate in modo semplice e il testo non perde la sua vena umoristica, anche grazie alle battute che trovano spazio tra le pagine. Il libro è consigliato a tutti: agli insegnanti alla ricerca di nuovi stimoli da fornire agli alunni e agli alunni che sono annoiati dalle solite spiegazioni, ma anche a quegli adulti che sentono di avere un conto in sospeso con la matematica. I capitoli si possono leggere nell’ordine proposto, ma si possono anche piluccare in ordine sparso, dando tempo ai contenuti di sedimentare e di trovare il proprio spazio tra le nostre idee.

Pubblicato in Libri
Venerdì, 21 Febbraio 2020 00:00

18 Febbraio 2020

Verifica di matematica, classe terza liceo scientifico.
Argomento: circonferenza e disequazioni irrazionali.

Durata: due ore.

Pubblicato in Esercizi
Sabato, 02 Settembre 2017 00:00

2 Settembre 2017

Verifica di matematica, classe terza liceo scientifico.
Verifica di recupero di settembre.

Durata: due ore.

Pubblicato in Esercizi
Giovedì, 02 Febbraio 2017 00:00

31 Gennaio 2017

Verifica di matematica, classe terza liceo scientifico.
Argomento: Circonferenza e soluzione grafica di disequazioni irrazionali.

Durata: due ore.

Pubblicato in Esercizi
Sabato, 10 Ottobre 2015 00:00

10 Ottobre 2015

Verifica di fine modulo sulle coniche e i problemi con discussione, classe quarta liceo scientifico.

Durata: due ore.

Pubblicato in Esercizi
Lunedì, 31 Agosto 2015 00:00

31 Agosto 2015

Verifica di matematica, classe terza liceo scientifico. 
Argomento: geometria analitica, esponenziali e logaritmi. Recupero debito.

Durata: due ore.

Pubblicato in Esercizi
Mercoledì, 26 Agosto 2015 09:58

Tutti in festa con Pi Greco

TRAMA:

Chiunque abbia interesse a “scoprire la bellezza e l’utilità” della matematica è seriamente invitato a leggere questo libro! Dedicato agli alunni della scuola secondaria di primo grado, il libro si presta in realtà a vari livelli di lettura, grazie anche alla struttura pensata dalla Cerasoli: il testo è costituito da tre parti che possono essere lette separatamente, ma che si intersecano l’una con l’altra. La parte principale è la narrazione dedicata specificamente a p, la seconda è data da una ventina di box azzurri e la terza da una ventina di box arancioni.

La prima parte comincia con la presentazione di p, il numero che “non ha una fine”, e prosegue con la storia di Archimede, che fin da piccolo aveva imparato “a giocare con i numeri, a ragionare, a non spaventarsi di fronte ai problemi, a correggere gli errori senza scoraggiarsi”. Il metodo di Archimede per determinare le cifre decimali di pcon una grande approssimazione è descritto dettagliatamente e con molta semplicità: il lettore è invitato ad applicare delle semplici formule per il calcolo delle aree e a mettersi alla prova per trovare una nuova cifra decimale.

Non è possibile parlare di Archimede senza ricordare la Biblioteca di Alessandria e il ruolo svolto da Eratostene nel campo della cultura: è proprio da una lettera scambiata con Eratostene che possiamo conoscere il livello di precisione raggiunto da Archimede, per il quale “la circonferenza di un circolo è uguale al triplo del diametro, più una parte che è maggiore di 10/71 e minore di 1/7”. È proprio il legame tra la circonferenza e il suo diametro che ci permette di trovare la simpatica relazione secondo la quale aumentando di un solo metro la lunghezza di un nastro ipoteticamente avvolto intorno all’Equatore, gli permetterà di sollevarsi in ogni punto di circa 16 centimetri.

La storia di parriva fino ai giorni nostri, perché solo nell’Ottocento è stato dimostrato, da un matematico tedesco, che le sue cifre continuano all’infinito. Il fatto che la sequenza delle cifre sia infinita ci garantisce che “quella sequenza conterrà certamente ogni altra sequenza di cifre” e possiamo così ritrovare la nostra data di nascita o il nostro numero di telefono, o qualsiasi altra sequenza di numeri ci possa venire in mente.

Il calcolo dell’area del cerchio è affascinante, e probabilmente più facile da memorizzare, se si usa il metodo di Archimede, che ha immaginato di suddividere il cerchio in tante striscioline e di trasformarlo in un triangolo, ma nemmeno il grande scienziato ha potuto risolvere l’impossibile problema della quadratura del cerchio, con il solo utilizzo di riga e compasso. Il cerchio è ineguagliabile nella sua area, perché – a parità di perimetro – è il poligono che racchiude l’area maggiore, come ben sapeva la regina Didone, fondatrice di Cartagine. Archimede non si fermò all’area e al perimetro della circonferenza: determinò anche il volume e la superficie della sfera, mentre Eudosso determinò il volume del cono.

La storia si conclude con la morte di Archimede ad opera di un soldato romano, durante l’assedio di Siracusa, ma la sua morte rappresenta solo il termine della sua esistenza terrena, considerata l’immortalità delle sue opere e, in particolare, del suo metodo.

Nei box azzurri, che si alternano con quelli arancio alla narrazione, sono raggruppate attività da svolgere durante la festa di p, giochi per comprendere meglio questa costante e tante curiosità, come la nascita della festa che viene celebrata ogni anno il 14 marzo, ideata dal fisico americano Larry Shaw e proclamata ufficialmente da Obama nel 2009, come occasione che “incoraggi i giovani verso lo studio della matematica”. Sul risvolto della copertina troviamo inoltre il puzzle dello Stomachion, ideato da Archimede e le due facce della Medaglia Fields, il premio più ambito dai matematici di tutto il mondo. I box arancio, ricchi di approfondimenti e di quesiti matematici un po’ più impegnativi, ci raccontano la storia della misura del meridiano terrestre, ci spiegano i termini irrazionale e trascendente che descrivono il pe completano l’elenco delle scoperte di Archimede con la descrizione delle leve.

 

COMMENTO:

Un libro bellissimo sia nella veste grafica che nella sua realizzazione: anche questa volta la Cerasoli ci ha regalato un testo unico, costruito attorno all’affascinante irrazionale p. Sembra che il numero catalizzi attorno a sé le figure geniali del suo tempo e lo sviluppo storico nel quale ogni avvenimento è inserito ci permette di rileggere anche la storia romana, con le guerre puniche e l’assedio di Siracusa. Così, in questo misto di realtà e leggenda, storia e mito, l’irrazionale più famoso non può che restare impresso nella nostra memoria.

Pubblicato in Libri
Domenica, 08 Marzo 2015 00:00

10 Marzo 2015

Verifica di matematica, classe terza liceo scientifico. 
Argomento: geometria analitica, circonferenza.
Verifica di recupero per il primo quadrimestre.

Durata: un'ora.

Pubblicato in Esercizi
Pagina 1 di 3

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy