Visualizza articoli per tag: matematica

Giovedì, 01 Settembre 2022 17:13

29 agosto 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: prova di recupero del debito.

Durata: 120 minuti.

La prova non è stata assegnata integralmente: agli alunni coinvolti sono stati assegnati alcuni degli esercizi (non tutti), a seconda degli argomenti che dovevano recuperare.

Pubblicato in Esercizi
Etichettato sotto
Martedì, 23 Agosto 2022 08:19

Matematici a fumetti

«Matematici a fumetti» è stato pubblicato a ottobre 2021 dalla Casa Editrice Dedalo. È stato illustrato da Andrea De Carli, docente di educazione visiva presso le scuole medie in Svizzera e alla sua prima esperienza con i fumetti, e scritto da Silvia Sbaragli, professoressa di matematica, responsabile del centro competenze didattica della matematica del Dipartimento di formazione e apprendimento di Locarno in Svizzera e autrice, insieme a Bruno D’Amore, della quadrilogia «La matematica e la sua storia», sempre per Dedalo.

Questo simpatico fumetto ha per protagonisti Ellie e suo zio Angelo. Quest’ultimo, vedendo la nipote litigare con i compiti di matematica, decide di proporle l’utilizzo di un paio di occhiali matematici virtuali, in modo che possa cambiare idea. Il percorso è costituito da venti storie dedicate ad altrettanti matematici: per ognuno di essi è stato scelto l’aneddoto che meglio lo identifica e caratterizza, in modo da poter essere contenuto in due tavole. Al termine, c’è una pergamena, nella quale sono riportate curiosità, ulteriori spiegazioni o sfide per il lettore in forma di giochi e quesiti. In apertura, troviamo una linea del tempo, nella quale vengono aggiunti i singoli matematici man mano si procede nella narrazione.
Il percorso comincia con la geometria, con l’applicazione dei problemi di massimo e minimo, ovvero con la famosa fondazione della città di Cartagine realizzata grazie all’astuzia di Didone nel IX sec. a.C.; Talete, invece, riesce a ideare il teorema che da lui prende il nome, misurando l’altezza della piramide di Cheope nel VII sec. a.C.; Pitagora ci descrive un mondo basato sui numeri, come dimostrato dalla sua musica; Socrate con la maieutica aiuta Ellie a trovare un quadrato di area doppia di quello dato, come è avvenuto nel dialogo del “Menone” scritto da Platone, mentre il suo contemporaneo Ippocrate tenta di risolvere la quadratura del cerchio attraverso le lunule. Platone illustra i suoi poliedri regolari ed Euclide, che rischia di mandare in crash gli occhiali virtuali di zio Angelo per colpa degli onnipresenti Elementi, ci mostra le costruzioni con riga e compasso. Non possono poi mancare Archimede, che Ellie incontra mentre corre nudo per le strade di Siracusa urlando “Eureka”, un modo per mettere in evidenza i suoi metodi creativi, e Ipazia, seconda donna di questo percorso, che ipotizza le orbite ellittiche per i pianeti e ci parla delle coniche. Al-Khwārizmī sposta l’attenzione verso l’algebra, quando nel IX secolo gli studi matematici vengono portati avanti grazie agli Arabi. Trait d’union tra il mondo arabo e l’Europa è Fibonacci, che con il suo Liber Abaci propone il sistema numerico indo-arabico e che è ricordato per la sua celebre successione. Il dodicesimo matematico è Luca Pacioli, che ritroviamo in compagnia di Leonardo da Vinci mentre studiano la sezione aurea, e si procede poi con Galileo Galilei, che nel XVI secolo parla di un universo scritto in caratteri matematici. Eulero è il primo principe dei matematici che incontriamo in questo percorso: suscita l’invidia di Ellie grazie alla sua abilità nel gestire più cose contemporaneamente (cosa non farebbe Ellie! E senza dover rinunciare a Minecraft!) e, visto il grande numero di lavori portati a termine, sembra difficile anche per gli autori compiere una scelta, e così ritroviamo la topologia dei ponti di Königsberg, la relazione di Eulero e i diagrammi per gli insiemi. Incontriamo il secondo principe dei matematici quando aveva nove anni: Carl Friedrich Gauss riesce a sommare i numeri naturali da 1 a 100, stupendo il suo insegnante, ma non mancano i riferimenti al poligono di 17 lati costruito a diciannove anni, e altri importanti risultati come la curva gaussiana. Il percorso procede con Möbius e con il suo nastro, che apre la via al cortocircuito mentale dato dagli infiniti di Georg Cantor, presentati graficamente in modo particolarmente efficace. La partita a scacchi tra Ellie e lo zio li guida da John von Neumann che insieme a Oscar Morgenstern sta aprendo la strada alla teoria dei giochi, mentre Alan Turing ci guida nel mondo della crittografia e della Seconda guerra mondiale, quando è riuscito a sconfiggere la macchina Enigma. Il percorso aperto da una donna, Didone, si chiude con un’altra celebre donna, Maryam Mirzakhani, che ha cominciato la sua carriera vincendo due volte le Olimpiadi della matematica e arrivando fino alla Medaglia Fields, prima donna a ricevere l’ambito premio. Dopo aver superato le proprie difficoltà con la matematica, grazie all’incontro con questi importanti matematici, Ellie ha davanti a sé un futuro brillante. Al termine, vengono regalati al lettore alcuni suggerimenti su come realizzare dei fumetti e viene fornito un piccolo vocabolario al riguardo.

Questo fumetto ci permette di conoscere le caratteristiche principali dei matematici scelti e stuzzica la nostra curiosità attraverso gli aneddoti presentati. Forse all’inizio possiamo condividere lo sconcerto di Ellie quando intuisce la passione che li anima, ritenendo impossibile appassionarsi a una disciplina da lei considerata noiosa, oppure ci stupiremo di come anche un problema senza soluzione possa aprire la strada a grandi scoperte e non potremo che guardare con meraviglia i metodi creativi di Archimede. Il percorso scelto guida il lettore dalle origini della matematica, fino alle applicazioni moderne, come la teoria dei giochi, rendendolo consapevole che la matematica si nasconde ovunque.
La lettura di questo libro può essere un’occasione di svago per gli adulti, e un modo per i ragazzi per incontrare venti personaggi che hanno fatto la storia della matematica. Silvia Sbaragli ha scelto sapientemente sia la rosa di matematici da proporre sia l’aneddoto con cui caratterizzarli, appassionando, coinvolgendo e regalando al lettore un’immagine della matematica a tutto tondo.

Pubblicato in Libri
Etichettato sotto
Giovedì, 18 Agosto 2022 08:28

Il potere dell'infinito

«Il potere dell’infinito» è stato pubblicato a febbraio 2021 da Codice Edizioni. L’autore, Steven Strogatz, ha scritto anche La gioia dei numeri, pubblicato per Einaudi nel 2013. Docente alla Cornell University, è un abile comunicatore scientifico, come dimostrano i suoi articoli sul New York Times.

L’obiettivo principale del libro è dichiarato a più riprese: «Mostrare il calcolo infinitesimale come un insieme, trasmettere il senso della sua bellezza, della sua unità e della sua grandezza» ed è stato pienamente raggiunto grazie a immagini, metafore e aneddoti. Nel suo percorso, Strogatz non ci risparmia equazioni e dimostrazioni, che ritiene siano le opere presenti nella galleria d’arte della matematica, ma al tempo stesso non insiste sui procedimenti di calcolo, così come un cuoco non ha bisogno di spiegare la ricetta per far apprezzare il piatto di alta cucina che ha appena preparato. In questo modo, l’autore ci rende accessibili le grandi idee e le vicende che fanno da sfondo allo sviluppo del calcolo infinitesimale. Nel suo racconto, spiccano la genialità degli approcci dei singoli matematici e l’aumento dell’astrazione ad ogni passo, mentre possiamo gustare i singoli passaggi attraverso la viva voce degli autori, nelle lettere da loro scritte.
Come mostrato dal titolo, il filo conduttore è l’infinito, e lo scopriamo fin dalle pagine dell’introduzione, dove viene presentato il principio dell’infinito, il punto di forza del calcolo infinitesimale, ovvero la scomposizione del problema in «porzioni così piccole che è difficile anche solo immaginarle, fino ad averne un numero infinito». Questa prima fase corrisponde al calcolo differenziale e ad essa fa seguito una «addizione infinita, che reintegra le parti nell’insieme iniziale», ovvero il calcolo integrale. Nella narrazione, Strogatz ripercorre la storia della matematica partendo dalla sorgente del calcolo infinitesimale, fino alle sue applicazioni, come l’animazione digitale, la chirurgia estetica, il GPS, la cura dell’HIV, il funzionamento del Boeing 787, lo sviluppo degli strumenti diagnostici come la TC e la PET, la ricostruzione del DNA, il funzionamento del forno a microonde e il radar.

Il primo capitolo è dedicato all’infinito, descritto alla maniera di Aristotele come potenziale e completato, e mostrato nella sua pericolosità nei paradossi di Zenone. Nel secondo capitolo, incontriamo Archimede, del quale viene descritto dettagliatamente il metodo geniale, dopodiché, con un salto di 1800 anni, possiamo incontrare Galileo Galilei e Keplero, che stimolano la nascita di nuovi strumenti matematici per poter descrivere e risolvere problemi inerenti al movimento. Nel quarto capitolo, conosciamo il calcolo delle tangenti realizzato da Cartesio e Fermat. Quest’ultimo, anche se con un approccio da dilettante, riesce a gettare «le basi del calcolo infinitesimale nella sua forma moderna» e vince lo scontro con Cartesio grazie alla semplicità, all’eleganza e alla bellezza del suo approccio. Il quinto capitolo è dedicato al ripasso delle funzioni, mentre il sesto ci permette di cogliere il cambiamento che sta avvenendo e ci presenta la derivata senza calcolarla, agendo sulla rappresentazione grafica della funzione come se si utilizzasse un microscopio. Solamente al settimo capitolo, ben oltre la metà del libro, incontriamo quello che viene classicamente considerato l’inventore del calcolo infinitesimale, Newton, che di fatto unifica, sintetizza e generalizza il lavoro fatto dai predecessori, costruendo il metodo delle flussioni. Dopo di lui, Leibniz lavora con i differenziali: dato il suo approccio originale viene considerato il coinventore del calcolo infinitesimale e, di fatto, il vincitore (se si può parlare di una gara), vista la notazione elegante e ben curata, che sulla lunga distanza riuscì ad affermarsi. Il nono capitolo è dedicato all’universo logico ed è la dimostrazione di come questa matematica, nonostante la sua astrazione, ci permetta di descrivere in modo dettagliato la natura. Il decimo capitolo è dedicato a Fourier, che con la grande intuizione delle onde sinusoidali stazionarie riesce a sintetizzare le onde più complicate, aprendoci al futuro descritto dall’undicesimo capitolo e alla dimostrazione della «inquietante efficacia» della matematica, che nella conclusione è mostrata attraverso tre applicazioni: l’elettrodinamica quantistica, l’antimateria e le onde gravitazionali.

Il libro offre un percorso impegnativo anche a causa dell’elevata densità dei contenuti, visto che in questa cavalcata attraverso la storia del calcolo infinitesimale Steven Strogatz non tralascia nulla. È proprio la densità di questo libro che obbliga il lettore a procedere con calma e a gustarsi ogni aspetto che l’autore ha voluto condividere. Una lettura sicuramente consigliata anche ai non addetti ai lavori, visto che per poter seguire il percorso non è necessario conoscere nulla più del calcolo algebrico.

Pubblicato in Libri
Lunedì, 01 Agosto 2022 22:17

Il professor Z e il segreto del triangolo

«Il professor Z e il segreto del triangolo» è stato pubblicato nel 2022 da Edizioni Dedalo e l’autore è Tommaso Castellani, insegnante in una scuola media di Roma, dedito alla comunicazione della scienza e editor della rivista «Sapere».

Questo romanzo è il terzo di una trilogia dedicata ai ragazzi delle medie, cominciata nel 2017 con Il professor Z e l’infinito e proseguita nel 2020 con I misteri dell’ipercubo. I protagonisti sono ancora Giulio e Ivano, che ora frequentano la terza media e, all’inizio dell’anno scolastico, scelgono di partecipare ai laboratori pomeridiani di approfondimento promossi dalla loro scuola e tenuti dal solito professor Z. Decidono di partecipare anche a un concorso di fumetti a squadre, che si concluderà ai primi di novembre. In queste loro avventure, sono accompagnati da Marcolino della 3^E, Arianna e Crystal Ball. Il professor Z guida i ragazzi alla scoperta delle geometrie non euclidee, con il suo solito stile: «Era tutto molto diverso dalla matematica come si faceva la mattina, ma aveva qualcosa di affascinante». Ad accompagnare questo percorso, non può mancare un giallo da risolvere: sembra che all’interno del gruppo ci sia una spia, che informa la squadra avversaria delle idee alla base del fumetto, ma sembra anche che il professor Z sia coinvolto in qualcosa…

Per la terza media di Giulio e Ivano, abbiamo un’indicazione molto chiara del periodo in cui ci troviamo, visto che l’ultimo capitolo si apre con la caduta del muro di Berlino, avvenuta nel novembre del 1989: è l’apice del tema del cambiamento, protagonista di tante riflessioni del nostro tredicenne, che, come tutti gli adolescenti, a tratti fatica a riconoscersi.
Il racconto è accompagnato dalla matematica, che cambia il modo di leggere la realtà di Giulio e Ivano: durante il suo laboratorio, il professor Z ha modo di parlare anche del linguaggio della logica, dei postulati e dei teoremi, facendo capire ai ragazzi qual è il modo corretto di ragionare. Sarà proprio la logica che guiderà i ragazzi nelle loro deduzioni per la soluzione del giallo.
Giulio, protagonista indiscusso e narratore, si misura con i limiti delle regole che gli vengono imposte: proprio nel suo confronto con Armando, con il quale sembra costruire una nuova amicizia, si troverà a interrogarsi su quale possa essere il senso di rispettare le regole. Queste regole richiamano quelle costruite con i postulati, che sembrano racchiudere al loro interno la geometria euclidea, e le regole degli scacchi, la grande passione di Ivano. Armando, che si comporta a volte come un amico bisognoso di attenzioni e altre come un piccolo tentatore, si domanda a più riprese quale sia l’utilità dello studio, ma il discorso viene sollevato anche durante il corso pomeridiano e il professor Z non perde occasione per spiegare che «talvolta idee inutili nella pratica, ma interessanti dal punto di vista matematico, si rivelano utili a secoli di distanza».
Tommaso Castellani non ha paura di parlare di argomenti elevati: nella narrazione trovano spazio il programma di Hilbert e i teoremi di incompletezza di Gödel, e le geometrie non euclidee vengono raccontate con un linguaggio semplice e chiaro e con l’aiuto di alcune illustrazioni.
Altro tema importante del libro, protagonista anche del primo capitolo della trilogia, è la comprensione della matematica: anche sulla copertina del libro, è riportato un dialogo tra il professor Z e i suoi alunni, professore che ha la stessa voce dell’autore quando ci dice che non bisogna essere ossessionati dalla necessità di capire: «Se le cose si capissero così, non servirebbero i professori, né tantomeno la scuola.» Se capire non è così importante, è Giulio stesso a imparare che bisogna avere impazienza e vivere la gradualità del processo di apprendimento, capendo un poco di più ogni giorno, grazie anche all’intervento del professor Z che si preoccupa di riprendere l’argomento più volte, inserendo ulteriori difficoltà ad ogni passo. È un percorso difficile ma affascinante quello che ci viene descritto dall’autore, e così arricchente che sono curiosa di vedere come saranno i primi mesi di Giulio al liceo. Perché ci sarà un quarto capitolo, vero?

Pubblicato in Libri
Etichettato sotto
Mercoledì, 27 Luglio 2022 19:49

I misteri dell'ipercubo

«I misteri dell’ipercubo» è stato pubblicato nel 2020 da Edizioni Dedalo. L’autore, Tommaso Castellani, ci propone “un’avventura matematica a più dimensioni”, come viene definita in copertina, che è il seguito de Il professor Z e l’infinito, scritto nel 2017.

Questo secondo capitolo è ambientato nel campeggio Cetorelli e i protagonisti sono ancora Ivano e Giulio, che ritroviamo nell’estate della seconda media, mentre vivono le proprie vacanze insieme alle rispettive nonne. Gli altri protagonisti della vicenda sono Pac-Man, Autan, Dino, Andrea Campitello, Scatolé, Andrea Lucci e poi ci sono Barbara, Saliva, Mosca e Maria Elisabetta. Ad accompagnare quest’avventura c’è anche la matematica, grazie alle letture e alle domande che il professor Z ha lasciato ai nostri protagonisti come compiti estivi. Una domanda, in particolare, troverà la sua soluzione solo al termine del percorso: “Ci sono più punti su un segmento o in un quadrato?”.

Durante le vacanze, Ivano e Giulio (soprannominato “Senza” per colpa di una pizza Margherita senza mozzarella) cominciano l’esplorazione dei dintorni e realizzano una piantina che rappresenta il campeggio e i luoghi nei quali si trovano. Dopo aver scoperto il Fiume Nord e il Fiume Sud, che delimitano il loro orizzonte, contando i passi e tentando una misurazione artigianale, si rendono conto che c’è una Zona Oscura, alla quale non possono avere accesso. Durante le loro misurazioni, hanno inoltre occasione di confrontarsi con la geometria e, in particolare, con i frattali, come mostrato dalla costa della Bretagna. Le loro riflessioni matematiche accompagnano tutta la narrazione: la definizione di dimensione, apparentemente così semplice, li porta a incontrare la curva di Koch e la curva di Peano, mentre facendo riferimento a Flatlandia Ivano cerca di guidare la comprensione di questi concetti. In questa estate di mare, Ivano e Giulio incontrano anche un Giustiziere e un ladro: sono i due misteri che accompagnano la loro vacanza. Il ladro ha fatto sparire anche la borraccia di Giulio e il Giustiziere sembra intervenire ogni volta che avviene qualcosa di profondamente ingiusto, mettendo in atto una piccola punizione nei confronti di chi si è reso responsabile della prepotenza, che si tratti di un adulto o di un ragazzo. Ivano, con la sua passione per le indagini, aiuta Giulio ad affrontare le proprie paure, mentre gli amici li accompagnano in questa avventura.

Al termine del percorso, Ivano e Giulio non solo risolveranno il mistero, ma incontreranno anche la quarta dimensione, con l’ipercubo nominato proprio nel titolo. Secondo i protagonisti, l’ipercubo è la “dimostrazione dei limiti del nostro pensiero”, ma al tempo stesso “della sua sconfinata potenza”, permettendoci di avvicinare con più leggerezza la matematica e facendoci “sognare un mondo a noi inaccessibile”. Per i nostri protagonisti, la matematica è anche una metafora che descrive la vita, e crescere significa aumentare le proprie dimensioni, mentre il mondo esterno sembra avere una dimensione in meno rispetto al loro universo interiore.
Esattamente come il capitolo precedente, anche questo libro è alla portata dei ragazzi delle medie ed è ricco di spunti e di idee anche per un insegnante che abbia voglia di trovare un modo diverso di avvicinare i propri studenti ai misteri non solo dell’ipercubo ma della matematica in generale.

Pubblicato in Libri
Etichettato sotto
Mercoledì, 27 Luglio 2022 19:48

Il professor Z e l'infinito

«Il professor Z e l’infinito» è stato pubblicato nel 2017 da Edizioni Dedalo. L’autore, Tommaso Castellani, ha conseguito un dottorato in fisica teorica all’Università La Sapienza e si è poi dedicato alla didattica e alla comunicazione della scienza. Ha scritto “Risolvere problemi difficili. Sudoku, commessi viaggiatori e altre storie” per Zanichelli (2013) e “Equilibrio. Storia curiosa di un concetto fisico” per Dedalo (2013), scrive inoltre regolarmente sulla rivista “Sapere”, di cui è editor.

Questo è il primo libro di una serie di tre. Il protagonista è Giulio, dodicenne che frequenta la seconda media in un istituto di Roma: ci racconta della sua amicizia con Ivano che lo aiuta ad appassionarsi alla matematica e a vincere il bullismo, che si presenta con le sembianze di un peluche di Coccolino. Tutto comincia con il teorema di Pitagora, le infinite terne pitagoriche e i difficilissimi problemi proposti dal professor Z, il “cattivissimo” insegnante di matematica, che ha l’abitudine di fare “domande strane”. D’altra parte, “il professor Z era il contrario esatto della chiarezza”, se condividiamo con Giulio la sua idea di chiarezza: “una spiegazione chiara è come un giallo che inizia con la rivelazione del nome dell’assassino”. È lo stesso Giulio a specificare che, per poter capire le lezioni di matematica, è necessario “un certo sforzo”: solo dopo aver scelto di farlo, grazie ad Ivano, le lezioni del professor Z si trasformeranno in qualcosa di appassionante. Questo professor Z non può che piacere: apparentemente agli antipodi rispetto al bravo – secondo gli alunni – insegnante di matematica, riesce a sfidare i propri studenti e ad appassionarli, grazie alla curiosità che riesce a suscitare.

Il racconto comincia con la scomparsa di Michele Bernocchi, compagno di classe dei due protagonisti, che dall’oggi al domani smette di frequentare la scuola. Alla soluzione del mistero non contribuiscono solo Giulio e Ivano, ma anche i compagni di classe, come Davide Rosso, apparentemente il bullo della classe, Chao, e Valentina Cirri, “una di quelle che prendevano sempre i voti più alti”. A raccontarci la vicenda è un Giulio adulto, che ricorda la sua frequenza delle scuole medie negli anni ’90. La narrazione è alla portata di qualsiasi studente delle medie e contiene tutta una serie di stereotipi sui matematici, sulla matematica, sulla vita in generale, che vengono in qualche modo smantellati. Al centro di questo racconto c’è la scuola e non manca la presentazione degli insegnanti in chiave umoristica: sono descritti con le loro manie e il loro piacere per il dramma nei rapporti umani, come dimostrano le incomprensioni tra Michael Jackson, come è soprannominata l’insegnante di educazione artistica, e la professoressa di italiano De Mattei.

Il fatto che, sulla copertina, il libro sia descritto come un “giallo matematico” ci suggerisce che la sparizione di Michele possa non essere l’unico mistero da risolvere: in seconda media si incontrano i numeri irrazionali, ci si confronta con l’infinito numerabile e il professor Z sfida i propri alunni con l’ultimo teorema di Fermat. Tutto questo ci permette di percepire la ricchezza del libro dal punto di vista matematico, e dà l’opportunità a ogni studente di incontrare una matematica un po’ diversa da quella che si studia a scuola. Un libro per i ragazzi delle medie, che può avere qualcosa di importante da dire anche agli adulti.

Pubblicato in Libri
Etichettato sotto
Giovedì, 14 Luglio 2022 06:36

Matematici in prima linea

«Matematici in prima linea», pubblicato nel 2021 dalla Casa Editrice Mateinitaly, è stato scritto da Simonetta Di Sieno e Angelo Guerraggio. Simonetta Di Sieno è docente di matematiche complementari presso l’Università di Milano e si occupa di storia della matematica italiana, di comunicazione, di didattica della matematica e ha curato la mostra MaTeinItaly del 2014 presso la Triennale di Milano; Angelo Guerraggio è direttore del centro Pristem dell’Università Bocconi ed è direttore editoriale del mensile Prisma. Entrambi si sono occupati della storia della matematica in particolare del periodo post-unitario e Guerraggio ha numerose pubblicazioni al riguardo, come La scienza in trincea per Raffaello Cortina nel 2015.

«Matematici in prima linea» contiene la storia di dieci matematici che, dal 1848 sino alla soglia del terzo millennio, hanno contribuito a vario titolo alla vita e alle vicende del Paese, grazie alla propria passione civile. Idealisti, hanno combattuto per ciò in cui credevano, tentando di esportare la razionalità scientifica nella vita civile, come i due autori ripetono a più riprese.

La rassegna comincia con tre intellettuali impegnati nel periodo risorgimentale: Francesco Brioschi, che ha contribuito all’istituzione del Politecnico, Quintino Sella, che ha introdotto gli strumenti matematici nella cristallografia e dal punto di vista politico aveva come obiettivo di fare di Roma la capitale non solo politica ma anche scientifica d’Italia, e Luigi Cremona, che ha collaborato a vario titolo con entrambi e ha contribuito a costruire la scuola italiana. Nella generazione successiva troviamo Vito Volterra, che ha aperto un nuovo settore di studi, l’analisi funzionale, e ha studiato il modello preda-predatore, permettendo l’applicazione della matematica ad altre discipline. Vito Volterra è noto anche per le vicende che l’hanno coinvolto durante il fascismo, visto che, insieme ad altri undici docenti universitari, si è rifiutato di sottoscrivere il giuramento al fascismo e per questo motivo ha danneggiato irreparabilmente la propria carriera, ma è noto soprattutto perché ha avuto un ruolo fondamentale nella fondazione del CNR, di cui è stato il primo presidente. Eugenio Elia Levi, di una generazione successiva rispetto a Volterra, ha vissuto l’epoca della Prima guerra mondiale, alla quale ha contribuito con la vita e con la costruzione delle tavole di tiro. Renato Caccioppoli si è opposto al fascismo pagando con l’internamento, visto che per impedire che venisse incarcerato la sua famiglia ha denunciato ipotetici problemi mentali che lo riguardavano: il suo valore nel mondo matematico è riconosciuto grazie al suo “possente ingegno”. Bruno De Finetti, che ha guadagnato l’immortalità matematica con la definizione di probabilità, è stato arrestato per ciò in cui credeva e perché ha cercato di difendere i diritti degli obiettori di coscienza al servizio militare. Emma Castelnuovo è un’icona della matematica del Novecento: con la didattica del fare, ha cambiato il modo di fare matematica, dando il proprio contributo come formatrice di altri insegnanti fino alla fine della sua vita. Si è spesa molto per la scuola, anche riorganizzando la didattica della matematica e contribuendo a costruire i programmi di matematica della scuola media nel 1977. Lucio Lombardo Radice è stato incarcerato, giovanissimo, nell’epoca del fascismo per la sua fede comunista, e nel secondo dopoguerra, mostrando il suo dissenso rispetto alla linea ufficiale del partito, è rimasto ai margini, senza riuscire a fare una vera e propria carriera politica. La sua attenzione era volta soprattutto alla divulgazione scientifica, tanto che fu anche consulente e ideatore di programmi televisivi. Il percorso si conclude con Ennio De Giorgi, il risolutore del diciannovesimo problema di Hilbert. Ha contribuito con numerose idee pionieristiche in vari ambiti matematici e, dal punto di vista civile, ha partecipato alla fondazione di Amnesty International sezione Italia, ha lottato in favore dei dissidenti sovietici e ha contribuito al progetto dell’Università dell’Eritrea in Somalia.

Altro elemento comune di questi matematici è la scuola e, parafrasando Massimo D’Azeglio, potremmo dire che, fatta l’Italia, era ora di costruire una scuola italiana, visto il notevole impegno speso in tal senso: Brioschi, Sella e Cremona, che hanno vissuto da protagonisti il periodo risorgimentale, hanno contribuito alla nascita della scuola matematica italiana, Bruno de Finetti parteciperà attivamente all’organizzazione delle prime gare matematiche e sarà presidente della Mathesis, dove porterà tutta la sua contrarietà all’insegnamento basato su formule da mandare a memoria, Emma Castelnuovo contribuirà a riorganizzare la didattica della matematica, Lucio Lombardo Radice mostrerà un’attenzione costante verso l’insegnamento e la scuola.

Questi dieci personaggi hanno contribuito a migliorare la nostra Italia con fervore e convinzione ammirevoli e ci hanno dimostrato che i matematici sono davvero figure a tutto tondo, pur soffrendo per non potersi dedicare a tempo pieno alle proprie ricerche. La lettura è sicuramente adatta a tutti e consigliata soprattutto agli insegnanti delle superiori che possono trovare numerosi spunti per gestire il percorso di educazione civica, mostrando come lo studio della matematica possa portarci a vivere in modo più consapevole nella società.

Pubblicato in Libri
Etichettato sotto
Domenica, 12 Giugno 2022 22:05

1 giugno 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: disequazioni lineari.

Durata: 45 minuti.

Pubblicato in Esercizi
Etichettato sotto
Domenica, 12 Giugno 2022 22:03

1 giugno 2022

Verifica di educazione civica, classe prima liceo scientifico.
Argomento: statistica.

Durata: 15 minuti.

Pubblicato in Esercizi
Domenica, 12 Giugno 2022 22:03

31 maggio 2022

Verifica di matematica, classe prima liceo scientifico.
Argomento: geometria euclidea, rette parallele e perpendicolari, parallelogrammi.

Durata: 60 minuti.

Pubblicato in Esercizi
Etichettato sotto
Pagina 1 di 22

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy