Visualizza articoli per tag: matematica

Venerdì, 02 Agosto 2013 16:13

Viaggio nel paese dei numeri - I misteri del caso

TRAMA:
Kaliza abita in un villaggio e un giorno, rientrando dopo aver raccolto dei bellissimi sassolini colorati, incontra Bakari, un ragazzo poco più grande di lei, che sta tagliando alcuni rami per costruire delle piccole frecce. Bakari la deride per la sua raccolta e si dice sicuro di aver costruito più frecce di quanti sassi lei abbia raccolto. Ma Kaliza non ha idea di quanti siano i suoi sassi. Bakari le mostra una tavoletta di legno, sulla quale fa un segno ogni volta che termina una freccia. Anche Kaliza decide di procedere così, ma ben presto la tavoletta è inutilizzabile, piena di segni e incisioni. La madre le fa vedere che il sistema di segni usato da Bakari può essere migliorato, raggruppando i segni cinque per volta. 
Le domande che si affollano nella mente di Kaliza sono davvero numerose e lei vorrebbe tanto incontrare qualcuno che potesse risponderle: il vecchio saggio del villaggio giunge proprio in quel momento, come per aiutarla a trovare delle risposte. Le parla dei numeri, del sistema degli Egizi e di quello dei Romani, con la loro difficoltà di rappresentare numeri molto grandi, fino ad arrivare al metodo indo-arabico, nato circa millecinquecento anni fa. Per aiutarla e farle conoscere qualcosa di più sui numeri, il vecchio saggio le propone di farle incontrare Aquila sacra, una creatura che può viaggiare nel tempo e nello spazio. 
L’aquila porta Kaliza indietro nel tempo e le spiega in cosa consista una base numerica, ma i matematici restano le persone più informate sui numeri e Kaliza desidererebbe tanto incontrarne uno: su consiglio dell’aquila, prima di addormentarsi pensa intensamente a un matematico e quell’uomo, come le aveva detto l’aquila, le fa visita in sogno. Questi continua il discorso dell’aquila sull’utilizzo delle diverse basi numeriche: scrivere un numero usando basi diverse è un po’ come usare diverse lingue e questo ci dimostra che il numero è un concetto puramente astratto. I numeri sono il pilastro della società avanzata e sono inesauribili. Il matematico le parla anche dell’infinito, che possiede proprietà straordinarie.
 
Clara, Hamid e Michele stanno scorrazzando nel vicinato con i loro rollerblade. Incerti su come continuare il loro giro, vedono un minuscolo negozio, probabilmente di giocattoli, visto che la vetrina è occupata da dadi di tutti i tipi e di tutti i colori. L’insegna è non solo il nome del negozio, ma anche il nome del misterioso proprietario che li accoglie dopo pochi minuti: Al-Khas, un uomo corpulento, dall’aria cordiale, con pochi capelli ma una barba fluente e con indosso un lungo abito. Lo strano personaggio li invita ad entrare: Clara rovista tra gli oggetti colorati e semoventi che si trovano sugli scaffali, Michele sofferma la sua attenzione su pochi oggetti, Hamid si aggira affascinato per questo negozio, dove sente quasi un profumo di mistero. Alla domanda di Clara, riguardante una moneta su un tavolino, Al-Khas risponde che si tratta del gioco migliore che possano trovare nel negozio: d’altra parte, tutte le cose che si trovano lì dentro sono accomunate dal caso. 
Al-Khas cerca di guidare i tre ragazzi alla scoperta di cosa sia il caso: forse il caso è il residuo della nostra ignoranza, ovvero ciò di cui non sappiamo dare una spiegazione scientifica, ma nel momento in cui accettiamo di non essere in grado di comprendere a fondo alcune cose e scegliamo di studiare la matematica del caso, cioè la “teoria delle probabilità”, scopriamo un metodo efficace per fare dei progressi, pur dovendo procedere con cautela. Il problema più grande è dato dal fatto che ognuno di noi ha le proprie opinioni, spesso false e non facili da correggere, e queste opinioni ci portano fuori strada. 
Il misterioso Al-Khas mostra ad un certo punto ai tre ragazzi la macchina di Galton, che mette in evidenza la curva a campana, ovvero la gaussiana, permettendo di osservare una delle leggi del caso più spettacolari: la macchina ci insegna che non è possibile prevedere il comportamento di una singola biglia ma tutte le biglie nel loro insieme seguono una legge nota. 
Entra in gioco a questo punto la scimmia Émile, così chiamata dal padrone del negozio dopo averle insegnato un numero spettacolare, ideato da Émile Borel, un matematico francese del XX secolo che si è occupato a lungo dello studio del caso. 
Il nostro Al-Khas non ha comunque tutte le risposte, ma questo non fa che confermarci la difficoltà della teoria delle probabilità.
 
COMMENTO:
Due libretti simpatici, della collana “Piccola biblioteca di scienza”. Possono introdurre anche i più piccoli ai misteri della matematica e, in particolare, ai misteri del calcolo della probabilità. Al termine della storia, ci sono anche alcuni piccoli giochi/esercizi per valutare se si sia capito adeguatamente l’argomento. 
Una lettura per tutti i curiosi che, a dispetto della giovane età, hanno voglia di mettersi in gioco e di imparare qualcosa di nuovo
Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:56

Il mistero del Più

TRAMA:
Ludovico aspetta con ansia l’arrivo del postino: presto porterà la sua pagella e la mamma non sarà certo contenta di quello che leggerà. Eppure, sorpresa! La pagella gronda 9, anche in matematica. Ludovico non vede l’ora di comunicarlo agli amici, ma Antonio, Carla e Giulio non sono contenti. Carla, addirittura, ha preso quattro in matematica, proprio lei che è forse la migliore studentessa dell’istituto. Quando capiscono l’errore, i tre amici pensano che il responsabile sia Ludovico e cominciano a inseguirlo. Ludovico trova una via di fuga nel giardino del professor Rosolindo, suo insegnante di matematica alle scuole medie. Una volta capito il problema, il professore suggerisce la soluzione: Ludovico deve andare nel mondo di Aritma, per correggere l’errore nelle somme, aggiustando il guasto della macchina sulla Montagna del Più. 
Giunto nel Giardino delle Ipotesi, dove le ipotesi sono dei frutti che nascono, maturano e cadono alimentando la terra, Ludo può andarsene solo risolvendo un quesito matematico. Giunge poi ad Aritma, la capitale, dove un gigante di quattro metri, con una corporatura poderosa e un viso doppio, Arcibaldo, lo sottopone ad un nuovo test per consentirgli di entrare in città. Indirizzato alla Taverna della Funzione Crescente, Ludo vi trova Gill, che provvede alla sua cena e lo porta all’Hotel H, dove Ludo può passare la notte, non senza dover risolvere alcuni quesiti: infatti, Georg, il portiere, deve accogliere infiniti clienti, ma l’albergo è già pieno. 
Dopo una colazione a base di Succo di Ipotesi in bottiglia di Klein, tori, bitori e tritori appena sfornati, Ludovico trova Persefone ad attenderlo nella hall. È stata mandata da Gill e, insieme a Jean-Pierre, Maurice e Constance costituisce il Circolo del Doppio Lucchetto, una specie di gruppo segreto di controllo che si assicura che nulla turbi il delicato ciclo della vita di Aritma. Anche ad Aritma, come sulla Terra, c’è un ciclo dell’acqua: dalla Grande Nuvola piovono numeri, che precipitano all’interno delle montagne del Più e del Per, dove, attraverso le operazioni, vengono trasformati in numeri diversi. Passando attraverso la Gola del Diviso e la Grotta del Meno, i numeri raggiungono infine tutte le zone di Aritma. Ma l’equilibrio è ora compromesso: le operazioni che avvengono all’interno della Montagna del Più non danno più il risultato corretto e quindi le acque si inquinano. Purtroppo, i membri del Circolo del Doppio Lucchetto non possono intervenire sulle grandi macchine, perché i postulati lo vietano loro, ma possono aiutare Ludovico a raggiungerle. 
Persefone, Constance e Jean-Pierre cominciano il viaggio verso Cistella, attraverso il Lago dei Complessi, Maurice e Ludovico attraversano invece la Foresta dei Teoremi, per incontrare Moritz, che ha i progetti della Macchina del Più. Al limite della Foresta, però, Ludovico viene rapito e si risveglia in una prigione, dove verrà condannato a giocare a scacchi o ad intagliare i pezzi della scacchiera nei sotterranei, a seconda delle sue abilità. Fortunatamente, una folla di farletti interviene a liberarlo e a portarlo da Helix, che gli concede un po’ della sua edera laterale per attraversare la Palude dei Controesempi e raggiungere Cistella. Grazie al Succo di Ipotesi, riesce a raggiungere il Laboratorio Limpidacqueo, dove lo aspettano i membri del Circolo del Doppio Lucchetto. Dopo aver programmato nei dettagli la salita alla Montagna del Più, all’alba Ludovico parte con Maurice per raggiungere la Macchina del Più.
Il suo intervento salva la situazione, ma non gli evita lo scontro con la madre, che ha ricevuto la vera pagella…
 
COMMENTO:
Simpaticissime le trovate dei due autori: la Taverna della Funzione Crescente, la Foresta dei Teoremi, il Lago dei Complessi e la Palude dei Controesempi, non parliamo poi dell’effetto del Succo di Ipotesi, che sicuramente ogni alunno con difficoltà in matematica vorrebbe assaggiare! I problemi che si incontrano nel testo, poi, fanno sentire protagonista il lettore, visto che dalla soluzione dei problemi dipende il proseguimento della storia: è come se ognuno di noi fosse mandato ad Aritma per aggiustare la Macchina del Più. 
Simpatico e semplice, il libro può essere “gustato” da tutti, anche se sulla copertina si trova l’indicazione dai 10 ai 14 anni.
Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:54

L'assassino degli scacchi

TRAMA:
L’uomo che ascoltava le confidenze del cielo – Il racconto di come Talete ha misurato l’altezza di una piramide. Un’applicazione di geometria euclidea, semplice ma di grande effetto.
A ruote libere – La futura ingegnere Claude ha l’occasione di dimostrare la propria bravura: deve riscattare l’eredità che spetta al padre, facendo funzionare una delle invenzioni del defunto zio, apparentemente impossibili e inutili. La geometria analitica le verrà in aiuto e le permetterà di far funzionare l’ortocipede, una bicicletta con le ruote quadrate.
La prigione verde – Esiste un metodo matematico per uscire da un labirinto? La risposta ci viene fornita da un ladro, che deve fuggire ai suoi complici.
L’assassino degli scacchi – Il grande campione di scacchi Viniyarin uccide un giovane che lo ha battuto con una tattica di gioco sorprendente. Poi si costituisce. Il commissario non è convinto e, in qualche modo, trova il vero movente dell’assassinio. Un’applicazione della teoria dei grafi.
Il muro dei 100 metri – Le successioni matematiche ci insegnano che non si può andare avanti all’infinito a battere il record dei 100 metri.
La strana storia di un padrone del tempo – I numeri razionali possono insegnarci a misurare delle frazioni di secondo con un orologio che misura solo i secondi, ma gli irrazionali sono la maggior parte nella realtà: irrazionali sono le durate delle orbite dei pianeti, ad esempio.
Il gioco delle tre carte – Dove si nasconde l’asso? Un modo alternativo di scommettere a questo gioco è offerto dalla matematica, giocando con la probabilità.
Sei lettere – Viene presentato simpaticamente il quesito di una «scimmia dattilografa», proposto dal grande matematico francese Émile Borel.
Danza segreta – Un’applicazione della legge di Benford, valido aiuto per smascherare truffe contabili. Questo racconto dimostra che non è semplice simulare il caso.
Blitzkrieg su algoritmo – Un algoritmo per trovare una sequenza casuale di numeri… e vincere una guerra. Purtroppo, bisogna scegliere con attenzione anche gli algoritmi. Non è una scelta semplice, se si considera che le ricerche al riguardo proseguono ancora oggi.
La dea Logica – A volte la matematica può salvare la vita. La storia è l’adattamento di un problema posto dal matematico Todd Ebert nel 1998.
 
“Se un buon servitore si riconosce dalla capacità di essere così discreto da far passare inosservata la propria presenza, allora la matematica è tra i migliori servitori della nostra civiltà.”
 
COMMENTO:
Ogni racconto è seguito da un’appendice, che illustra nel dettaglio le teorie matematiche presentate nel racconto. Le appendici sono un invito ad approfondire, piccole spiegazioni accessibili a tutti. E la caratteristica principale del libro è proprio nella sua accessibilità: i racconti sono simpatici e piacevoli, gli spunti matematici offerti semplici ma non banali. Inoltre, i racconti ci dimostrano ciò che ci viene raccontato all’inizio del libro: la matematica è ovunque.
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 15:53

Gli artisti dei numeri

TRAMA:
Christian, dodicenne con qualche piccolo problema di salute, viene mandato dai genitori con la zia Ursula in un castello in Toscana, per partecipare a una scuola estiva di matematica. Nonostante sia la sorella di suo padre, Christian non ha mai avuto molte occasioni per frequentare Ursula: la convivenza di quindici giorni li avvicinerà e, al tempo stesso, permetterà a Christian di trovare nella zia una complice e un’amica, forse grazie alla comune passione per la matematica, forse grazie al fatto che Ursula ha vissuto e quindi può capire i problemi che Christian si trova ad affrontare ora.
In questa scuola estiva, che si svolge nei pressi di Cortona, il professor Primo terrà delle lezioni sulla crittografia e, quindi, sull’affascinante mondo della teoria dei numeri. Italiano di origine, ma in America da molti anni, il prof. Primo si mostra da subito un bravo istrione, capace di conquistare la platea dei matematici e anche la simpatia di Christian, cui mancano un po’ di strumenti per capire appieno gli argomenti proposti, ma non certo la passione.
Tra i matematici convenuti a Cortona, c’è un certo Detlef, soprannominato dagli italiani del corso Il Brutto: questi si contrappone da subito al professor Primo, contestando spesso le sue presunte abilità. Il professore, infatti, ha promesso di svelare nel corso delle sue lezioni il contenuto di un manoscritto, custodito gelosamente dalla sua assistente Giustina, che dovrebbe contenere il frutto di anni di lavoro e la soluzione dell’enigma della crittografia: «Ecco il manoscritto che ho preparato per il corso. Contiene nozioni che nessuno ha ancora visto. Al termine delle due settimane saprete tutto quello che c’è scritto qui dentro. E ne saprete più di tutti gli altri studiosi».
Il tempo alla scuola estiva passa in fretta, tra gite a Cortona, chiacchierate con gli amici e codifica e decodifica di messaggi scambiati con la zia. Una notte la tranquillità della scuola viene turbata dall’urlo di Giustina che chiede aiuto, terrorizzata da uno scorpione trovato nella doccia. Un secondo urlo annuncia la scomparsa del famoso manoscritto del professore. Il mercoledì della seconda settimana, il professore “dà fuori di matto” e Christian assiste alla scena: Primo urla sguaiatamente alcune parole, mescolando un po’ di lingue e scrivendo simboli indistinguibili alla lavagna. Il professore non è in grado di mantenere le promesse fatte all’inizio del corso, che si chiude in anticipo con un vero colpo di scena.
 
COMMENTO:
Simpatico libro per i più piccoli, di semplice lettura. Leggendolo, i ragazzi possono imparare che i numeri, nella loro semplicità, nascondono una grande ricchezza e al tempo stesso rendersi conto che i matematici sono degli “artisti dei numeri”:
 
«In matematica, disse il professore, è possibile determinare ciò che è giusto mediante argomenti logici. Non c’è bisogno di litigare. Non vince il più forte, ma chi ha ragione. E tutti sono in grado di capire chi ha ragione».
Pubblicato in Libri
Etichettato sotto
TRAMA:
“Quando avevo quattordici anni cominciai a tenere un taccuino. Un taccuino di matematica. Prima che decidiate di classificarmi come un caso senza speranza, mi affretto ad aggiungere che non era destinato alla matematica che studiavo a scuola. Era un taccuino con tutte le cose matematiche interessanti che non venivano insegnate a scuola. Che, come scoprii, erano moltissime, perché presto dovetti comprare un altro taccuino”. E da quel taccuino, da quella matematica che non si fa a scuola – visto che “la matematica che avete visto a scuola non è tutto” – è nato questo libro, ricco di “rompicapi logici, rompicapi geometrici, rompicapi numerici, questioni varie di cultura matematica, cose da fare e cose da costruire”. 
Accanto a piccoli saggi “scritti in uno stile informale e non tecnico” ci sono piccoli giochi per poter stupire gli amici, oppure aneddoti divertenti o scoperte interessanti. 
 
COMMENTO:
“Quello che ho cercato di fare è stuzzicare la vostra immaginazione mostrandovi molte idee matematiche stimolanti e affascinanti. Voglio che vi divertiate, ma la mia più grande soddisfazione sarebbe che La piccola bottega vi incoraggiasse ad affrontare veramente la matematica, a provare l’emozione della scoperta e a tenervi informati sugli sviluppi più importanti, che risalgano a quattromila anni fa, alla settimana scorsa… o a domani”. 
Un libro ricco di spunti, di informazioni, di giochi… di matematica. Quindi, al tempo stesso, divertente e impegnativo. Tra i vari argomenti affrontati, ce n’è davvero per tutti i gusti. 
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 15:51

I maiali matematici

TRAMA:
È mercoledì e il professor Lardoni ha programmato un compito di matematica. La Banda dei Porcelli – ovvero Lele Maiale, e i gemelli James e Billy – ha deciso di impedirgli di fare la verifica. E così, una domanda dopo l’altra, un indovinello dopo l’altro, tutti i maialini della classe riescono a distrarre il professore, fino all’arrivo del preside e dell’ispettore. Questi inizialmente si complimentano con il professore per la sua iniziativa di proporre qualcosa di nuovo ai suoi studenti, ma poi, messi in imbarazzo dalle domande degli alunni alle quali non sanno rispondere, dichiarano che forse è prematuro inserire nei programmi scolastici simili innovazioni.
 
COMMENTO:
Simpatico libretto, dedicato ai più piccini. Contiene un sacco di giochi matematici, pescati tra indovinelli noti o tra applicazioni della matematica negli ambiti più svariati, “a dimostrazione che la matematica è una materia fantastica e di straordinaria importanza”, come riconoscono gli alunni del professor Lardoni. 
I problemi cominciano a pagina 8, dopo una breve presentazione dei personaggi, e finiscono a pagina 99. Considerato che ogni problema occupa due facciate, quanti problemi ci sono nel libro?
Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 15:46

Le ostinazioni di un matematico

TRAMA:

Questa è la storia di un matematico, Armand Duplessis, che aveva davanti a sé un brillante futuro, ma che ha scelto di impegnare la propria vita nel tentativo di dimostrare la congettura di Goldbach. I singoli capitoli sono quasi separati, visto che il protagonista muore ben tre volte e ce lo spiega l’autore nell’introduzione: La morte del protagonista in un capitolo non incide, né deve farlo in alcun modo, sul suo comportamento nel capitolo seguente. Lo si ritrova vispo come una funzione che, superato qualche valore non ammesso, risuscita in un batter d’occhio: affondata verso – ∞ un istante fa, ora si avvicina a + ∞, pronta a nuovi asintoti.

Nato il 16 aprile 1964, ovvero 16.4.64, che potrebbe anche essere letto come 16 x 4 = 64 o come 24.22.26, Armand Duplessis sente che le potenze di 2 hanno in qualche modo segnato la sua vita. A sedici (=24) anni, seguì la serie televisiva Gli enigmi che sfidano l’umanità, durante la quale venne presentata la congettura di Goldbach: ogni numero pari è la somma di due numeri primi. Quella stessa sera, a tavola, annunciò la sua decisione. Sarebbe diventato un matematico. Non un professore di matematica, intendiamoci: un matematico. Perché aveva intenzione di essere il primo a dimostrare la congettura di Goldbach.

Scegliendo di dedicarsi alla teoria dei numeri, venne assunto dall’università di Lione: agli inizi, Armand era uno di quei pochissimi ricercatori che si mostrano all’altezza delle grandi speranze riposte in loro. In moltissimi ambiti della teoria dei numeri i suoi risultati furono stupefacenti, le sue intuizioni decisive, le sue pubblicazioni numerose, le sue idee fondamentali. Ma a 32 (=25) anni, Armand decise di dichiarare che avrebbe proseguito le sue ricerche nel tentativo di dimostrare la congettura di Goldbach.

Dopo essersi dedicato instancabilmente, in ogni momento della giornata, alla congettura, un giorno Armand decise di dimenticarsene, di liberare la propria mente, nel tentativo di pensarci meglio. Esattamente come fece Poincaré che, dopo essersi concentrato molto tempo e inutilmente su un problema, decise di partire per una gita e, mettendo piede sull’omnibus di Coutances, riuscì a trovare la soluzione. Armand sperava di trovare nell’accensione del proprio computer ciò che Poincaré aveva trovato salendo sull’omnibus. Ma non successe nemmeno questo… ha luogo semplicemente la sua seconda morte, mentre si smaterializza osservando la propria immagine.

Dopo la sua morte, i colleghi si trovano a farne un “elogio funebre” un po’ particolare, visto che commentano anche cinicamente la scelta di Armand di dedicare tutta la propria vita a una congettura così difficile: «Avrebbe potuto fare della grande matematica. Forse avrebbe potuto farne, voglio dire. Forse. Non lo sapremo mai, adesso. Ma se c’è una cosa certa, è che si è ostinato stupidamente».

 

COMMENTO:

Non bisogna cominciare la lettura di questo libro aspettandosi un romanzo normale, con un inizio e una fine. È un romanzo dai molti inizi e dalle tante fini – come dimostrano le tre morti del protagonista – un romanzo fatto in realtà da tanti singoli racconti un po’ fantastici, che descrivono però molto bene la vita di un matematico.

Non mancano numerosi agganci con la realtà matematica: i colleghi di Armand hanno, ad esempio, nomi che imitano quelli dei celebri matematici e cioè Potagore (Pitagora), Pacaré (Poincaré), Barbacchi (Bourbaki), Couchy (Cauchy), Bèrel (Borél), Lebogue (Lebesgue). Simpatica inoltre è la descrizione della presunta scoperta, da parte della moglie di Armand, dell’amante del matematico, secondo una deduzione fatta dopo aver rilevato l’improbabile ricorrenza dei multipli di 99.

Il testo è scorrevole e divertente e, verso la fine, l’autore ci parla anche di Goldbach e della comparsa della famosa congettura durante uno scambio epistolare con Eulero, avvenuto il 7 giugno 1742, ovvero 7.6.42… come nel caso della data di nascita del protagonista: 7 x 6 = 42.

Pubblicato in Libri
Etichettato sotto
Venerdì, 02 Agosto 2013 15:43

Le curve celebri

TRAMA:

A partire dalla matematica dell’antichità, essenzialmente greca, Cresci tratteggia la storia della matematica attraverso i secoli, seguendo il percorso con brevi descrizioni delle curve piane. Non ci sono trattazioni matematiche o dimostrazioni: ci siamo sforzati di legare ogni curva che viene presentata nel testo al suo ideatore e di quest’ultimo tratteggiare la personalità: le biografie dei matematici sono spesso ricche di episodi, di avvenimenti, di aneddoti curiosi, e la parte matematica delle curve non può prescindere dalle circostanze della loro creazione.

Grazie ai tentativi dei greci di ottenere le soluzioni dei tre grandi problemi dell’antichità – la quadratura del cerchio, la duplicazione del cubo e la trisezione dell’angolo – si ottennero altre curve: le lunule di Ippocrate, la trisettrice di Ippia, la quadratrice di Dinostrato.

Procedendo nella storia, incontriamo Archimede: al suo nome sono legate la spirale, una curva piana, tracciata da un punto che si sposta uniformemente lungo una semiretta, mentre questa a sua volta ruota uniformemente attorno al suo estremo e la circonferenza, visto che il genio dell’antichità raggiunse una buona approssimazione del p, inventando un procedimento iterativo.

Nel XVII secolo si celebra l’inizio della geometria analitica: René Descartes operò una vera rivoluzione, identificando una relazione algebrica, e cioè un insieme di simboli formali, con una curva, o meglio con un luogo geometrico, e cioè con l’insieme di tutti i punti che soddisfano ad una data proprietà geometrica. L’utilizzo delle coordinate non era una novità, perché già Apollonio aveva utilizzato un sistema analogo. Le coniche erano già comparse secoli prima: Menecmo le definì e utilizzò per primo, ricavando la parabola, l’ellisse e l’iperbole dall’intersezione di coni circolari retti (rispettivamente con angolo al vertice retto, acuto e ottuso) e piani perpendicolari alla generatrice del cono. Euclide scrisse quattro libri sulle sezioni coniche, probabilmente andati perduti perché superati dall’opera di Apollonio, Le coniche, trattato nel quale dà alle curve il nome con cui le conosciamo anche oggi ed effettua una generalizzazione, ottenendo le curve da uno stesso cono e variando l’inclinazione del piano di sezione. Le sue sono innovazioni coraggiose e profonde.

Altra curva degna di nota è la cicloide, “la bella Elena” della geometria, che non è altro che il percorso che fa nell’aria il punto di una ruota, quando essa rotola nel suo movimento normale, dal momento in cui il punto comincia a sollevarsi da terra, fino al momento in cui la rotazione continua della ruota l’abbia ricondotto a terra, dopo un giro completo. Se la curva fissa non è una retta ma una circonferenza, la cicloide diventa epicicloide se la circonferenza che rotola è all’esterno, ipocicloide se rotola all’interno. I moti epicicloidali furono usati da Tolomeo per descrivere il movimento di alcuni pianeti.

Tra le curve più famose citate nel libro: la concoide di Nicomede, la cissoide di Diocle, la lumaca di Pascal (padre), la lemniscata di Bernoulli, la spirale logaritmica, la catenaria, la cardioide, la nefroide, la strofoide, la clotoide – studiata inizialmente da Eulero –, la versiera di Gaetana Agnesi – nota in inglese come witch of Agnesi –, la funzione di Gauss, la funzione logistica di Verhulst – per lo studio della crescita demografica di una popolazione –, la curva di Peano, la polvere di Cantor, la curva a fiocco di neve, il setaccio apolloniano e i frattali di Mandelbrot.

Le appendici che concludono il testo riprendono tre argomenti oggetto di presentazione nel testo: la biblioteca di Alessandria, l’invenzione della Pascaline e la storia di Lady Lovelace e Charles Babbage, che precorsero i tempi concependo l’Analytical Engine – il predecessore dell’odierno pc – già nel XIX secolo.

 

COMMENTO:

Visto l’elevato numero di argomenti, curve, aneddoti, non si può che trattare di un “assaggio” di storia della matematica, da sottoporre a ulteriori approfondimenti. Semplice e scorrevole, la sua lettura è consigliata a tutti.

Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:42

La formula segreta

TRAMA:

Nella notte tra il 18 e il 19 febbraio del 1512, durante il sacco di Brescia ad opera dei soldati francesi, Niccolò Tartaglia cercò riparo dentro il Duomo, ma i francesi assalirono i rifugiati e uno di essi gli inferse cinque ferite in volto. Niccolò guarì nel giro di qualche mese, grazie alle cure della madre, ma le ferite alla bocca gli causarono la balbuzie: i coetanei lo prendevano in giro per questo suo difetto chiamandolo “tartaglia” ed egli adottò questo nomignolo come cognome.

Nato a Brescia presumibilmente nel 1499 da una famiglia molto povera, Niccolò Tartaglia lavorò autonomamente alla propria formazione scientifica, studiando le opere di Euclide, Archimede e Apollonio. Tra il 1516 e il 1518 si trasferì a Verona, dove rimase fino al 1534; qui acquisì notorietà e rispetto, con il ruolo di maestro d’abaco. La fama raggiunta da Tartaglia è testimoniata dai quesiti da lui posti a numerosi interlocutori. A quei tempierano di gran voga in Italia le disfide tra matematici, di rango universitario e non: veri e propri duelli scientifici il cui svolgimento ricalcava i canoni dei tornei cavallereschi. Uno studioso inviava a un secondo alcuni problemi, che rappresentavano il guanto di sfida di queste particolari tenzoni, e lo sfidato doveva cercare di risolverli entro un termine prestabilito, proponendo a sua volta all’avversario ulteriori quesiti. La consuetudine voleva poi che ogni duello dall’esito contrastato culminasse in un pubblico dibattito, nel corso del quale i contendenti erano tenuti a discutere dei problemi scambiati e delle relative soluzioni alla presenza di giudici, notai, governanti e di una platea di spettatori sovente assai folta. Non era infrequente, inoltre, che tali disfide si facessero parecchio incandescenti, sconfinando dal piano scientifico a quello dell’invettiva personale. D’altra parte, la posta in palio poteva essere molto alta: il vincitore di una pubblica disfida matematica, ossia colui che aveva risolto il maggior numero di problemi, non guadagnava solo gloria e prestigio, bensì più concretamente anche un eventuale premio in denaro, nuovi discepoli paganti, l’acquisizione o la conferma di una cattedra, aumenti di stipendio e spesso incarichi professionali ben remunerati. La carriera dello sconfitto, invece, rischiava di rimanere seriamente compromessa.

Il secondo protagonista di questa storia è Gerolamo Cardano: nato a Pavia il 24 settembre 1501, si laureò in medicina nel 1526, ma solo nell’estate del 1539 fu accolto dal Collegio dei medici di Milano, che aveva osteggiato la sua elezione a causa dei suoi illegittimi natali. Divenne in seguito il medico più famoso e richiesto della città. Informato da un matematico che Tartaglia aveva trovato la formula risolutiva delle equazioni di terzo grado, si mise in contatto con lui all’inizio del 1539 per avere la formula, ma Tartaglia rispose negativamente alla richiesta: “quando vorrò pubblicar tal mia inventione la vorrò publicar in opere mie et non in opere de altri”. Dopo una corrispondenza dai toni abbastanza vivaci, Tartaglia si recò a Milano da Cardano in primavera: ebbero a disposizione diverso tempo per discorrere tra loro e confrontarsi su vari temi, uno dei quali non poteva che essere la questione delle equazioni cubiche e delle loro regole risolutive. Cardano giurò a Tartaglia che non avrebbe mai svelato la formula risolutiva e questi si lasciò convincere a rivelarla. I due smisero di scriversi nel gennaio del 1540 e non sono documentati ulteriori contatti personali o epistolari.

Mentre Tartaglia rivelava la formula, Cardano era in compagnia di un giovanissimo allievo, Ludovico Ferrari. Nato a Bologna il 2 febbraio 1522, Ferrari discendeva da una famiglia milanese: rimasto presto orfano, fu mandato a Milano come servitore nell’abitazione di Cardano, il quale, accortosi della sua predisposizione agli studi, si prese cura della sua istruzione. Nel 1542 si recarono a Bologna per far visita a un matematico: questi mostrò loro un vecchio taccuino appartenuto al suocero, Scipione Dal Ferro, nel quale i due trovarono la formula risolutiva delle equazioni cubiche. Dopo aver appreso la formula, Cardano e Ferrari si persuasero della necessità di diffondere in tutto il mondo scientifico le nuove conoscenze acquisite e Cardano, in particolare, si sentì svincolato dal giuramento fatto a Tartaglia. Nel 1545, Cardano pubblicò il volume Artis magnae, sive de regulis algebraicis più noto come Ars Magna, un testo destinato a imprimere una svolta profonda nella storia dell’algebra, determinando l’avvio di una nuova era per le ricerche matematiche. Nel suo trattato, Cardano attribuì agli autori delle formule risolutive i dovuti meriti e riconobbe i contributi di Ferrari, con il quale aveva collaborato. La formula risolutiva delle equazioni cubiche è spesso denominata «formula cardanica» poiché, pur non essendone stato lo scopritore, fu Cardano a farla conoscere al mondo scientifico, e per di più completa di dimostrazione.

Nel 1546, Tartaglia pubblicò Quesiti et inventioni diverse, nel quale si scagliò contro Cardano, che non aveva tenuto fede al giuramento di silenzio. Cardano non replicò all’attacco, ma lo fece Ferrari: il 10 febbraio 1547, inviò a Tartaglia un pubblico «cartello di matematica disfida», proponendogli di misurarsi con lui in un pubblico “duello”. I due continuarono a scambiarsi cartelli dal giugno all’ottobre del 1547 e si scontrarono il 10 agosto 1548 a Milano. Tartaglia abbandonò la disputa dopo il primo giorno, perché la riteneva invalidata dal comportamento del pubblico presente, apertamente schierato a favore dell’avversario, ma dichiarò di esserne il vincitore, contestando alcune delle risposte di Ferrari. Non possiamo sapere come siano andate davvero le cose, ma la maggior parte delle fonti riconosce in Ferrari il vincitore dello scontro.

Tartaglia morì a Venezia il 13 dicembre 1557, in solitudine e povertà. Ferrari morì a soli quarantatre anni, probabilmente avvelenato dalla sorella. Cardano morì il 20 settembre 1576, dopo aver visto giustiziare uno dei suoi figli per uxoricidio ed essere stato condannato dall’Inquisizione.

 

COMMENTO:

Quanto è raccontato in questo libro costituisceun complesso di vicende tanto sorprendenti e appassionanti da richiamare, crediamo, la curiosità anche dei non addetti ai lavori: vicende ricche di situazioni dal sapore romanzesco – intrighi, segreti, arroventate dispute erudite – e animate da personaggi affascinanti, geniali e bizzarri, capaci di eccellere nella loro epoca sia per virtù di intelletto che per umane debolezze. Con queste parole nell’introduzione, l’autore ci fornisce un ottimo motivo per leggere questo libro. Per molte persone, è difficile immaginare che tante passioni possano animare la scoperta di una formula matematica: per questo tutti coloro che considerano la matematica arida e priva di passionalità dovrebbero leggere questa storia.

 

Le ultime righe del libro:

Nella prima metà del Cinquecento, di fatto, Scipione Dal Ferro, Niccolò Tartaglia, Gerolamo Cardano e Ludovico Ferrari furono i quattro scintillanti moschettieri che illuminarono il cielo dell’algebra con le loro straordinarie e feconde scoperte. Scoperte originate non solo da genio creativo e abilità tecnica, ma altresì da passione, dedizione, perseveranza, competizione, gelosia, ambizione, stima, risentimento, impeto, sofferenza. Insomma, da tutto il carico di umanità che si può nascondere anche dietro una formula matematica.

Pubblicato in Libri
Venerdì, 02 Agosto 2013 15:34

Ipazia e la notte

TRAMA:

Ipazia è una filosofa, matematica e astronoma che insegna al Museo di Alessandria d’Egitto alla fine del IV sec. d.C. Fra le sue imprese c’è il commento a un libro del grande Tolomeo – al sistema geocentrico da lui proposto, Ipazia preferisce il sistema eliocentrico di Aristarco – e alle Coniche di Apollonio di Perga.

Un anno dopo la morte del padre Teone, Ipazia si ritrova a far lezione in un’Alessandria perennemente in tumulto: da quando l’imperatore Teodosio ha proclamato il cristianesimo religione di stato, il patriarca di Alessandria, Cirillo, durante le sue prediche istiga i cristiani alla violenza contro i pagani. Nel frattempo, anche la partenza per Atene di Sinesio, l’allievo preferito di Ipazia, contribuisce a farla sentire amareggiata e offesa per una separazione che sente come un tradimento. A questi si aggiunga il matrimonio di Sinesio con Fulvia: Ipazia ha sempre pensato che avrebbero condiviso la scelta della verginità e che sarebbero invecchiati insieme e, sull’onda dell’emozione, decide di sposare Evandro, un celebre grammatico, amico del padre. Dopo il matrimonio, però, non si concede al marito e questi, a un mese dalle nozze, la lascia.

La Chiesa entra sempre più prepotentemente nelle questioni di stato e Teodosio ordina che vengano requisiti tutti i templi pagani per farne delle chiese cristiane: ad Alessandria si arriva ad una vera e propria carneficina. Ipazia, che si lascia guidare dalla ragione della filosofia, cerca di scoraggiare la violenza: «Se vogliamo pensare e agire secondo virtù, dobbiamo volere un mondo in cui a ognuno sia permesso di onorare i suoi dei, quali che siano, e di praticare pubblicamente il suo culto, senza che nessuno lo infastidisca o lo offenda nelle sue convinzioni e nei suoi riti.»

La comunità dei pagani diviene sempre più debole: gli elleni più noti e influenti abbandonano Alessandria e Ipazia diventa il punto di riferimento per i pagani rimasti in città. Decide di sfidare Cirillo a un duello di idee in pubblico, come soluzione pacifica dello scontro, per trovare in qualche modo una mediazione tra cristiani e pagani. Durante il duello, Cirillo definisce Ipazia una prostituta e non si comporta in maniera leale, ma la lotta si conclude più o meno alla pari. Ipazia è come assente da quando uno dei cristiani, tra il pubblico, le ha chiesto se sa chi sia sua madre. A Ipazia è sempre stato detto che sua madre, una nobile dell’Illiria, è morta di parto, ma non è così: la sua vera madre è Demetra, la serva che le ha fatto da balia. Nei giorni che seguono, le due donne parlano a lungo. Presa dai suoi pensieri e dalla nuova vita che ha cominciato a vivere, Ipazia trascura il pericolo e un giorno, andando a lezione, viene ferita gravemente. Il medico riesce in qualche modo a salvarla, ma dopo il grande pericolo corso le ordina, per il bene della sua salute, di trasferirsi in campagna.

Qualcosa in lei è davvero cambiato: in Antinoo, servitore fedele, trova finalmente l’anima che la completa. Quando viene raggiunta dai suoi allievi, Ipazia decide di fare lezione in campagna: si forma così una comunità filosofica, una vera scuola, come aveva sempre desiderato.

Nel frattempo, Sinesio, divenuto vescovo di Tolemaide, ha perso tutto visto che i tre figli sono morti e Sinesio, sentendo di non aver molto da vivere, cerca di contattare Ipazia: muore tra le sue braccia, finalmente rappacificato con lei e con se stesso.

Ipazia torna dalla sua dimora di campagna, intenzionata a spendere la propria vita in nome della verità. Alessandria si presenta preda del furore delle opposte fazioni. Ipazia tenta di risolvere la situazione aiutando il prefetto Oreste, ma è ormai convinta da tempo che la filosofia è impotente contro l’irrazionalità della folla. Riprende il suo insegnamento al Museo, ma attorno a lei tutto parla di abbandono.

Dopo la decisione di Oreste di proibire una processione organizzata dal vescovo, Cirillo fomenta la reazione, dando la colpa a Ipazia, sicuramente l’ispiratrice delle scelte del prefetto. Aggredita mentre si reca al Museo, Ipazia viene uccisa sul sagrato del Cesareo, il tempio cristiano: Le gridano insulti e sconcezze, la toccano, le strappano le vesti, gridano, ridono risate oscene. Si spingono gli uni con gli altri, si calpestano, corrono come un branco di animali infuriati o sorpresi da un incendio. Non sono più una somma di uomini, ma un unico immenso animale acefalo che corre qua e là senza sapere dove né perché, reso cieco da un immenso furore. Sono come una muta di cani che abbia annusato l’odore della preda, ne abbia già assaggiato il sangue e non possa più fermarsi, non oda più il richiamo del padrone che vorrebbe trattenerla. Hanno bocche spalancate nell’urlo dell’odio, mani adunche che graffiano e sbranano, occhi sbarrati, senz’altra espressione che un’ira cieca e bestiale. La tirano da ogni parte, lacerandole la pelle e poi la carne; la prendono a calci sul ventre, sul petto, sul viso.

 

COMMENTO:

Libro molto coinvolgente e attuale: la storia di intolleranza che viene descritta potrebbe essere avvenuta ai giorni nostri. Ipazia è descritta a tinte vivaci: è un personaggio che suscita simpatia, una donna che vive per la verità e per la conoscenza, e che cerca di cambiare in qualche modo il corso della storia. Le sue intuizioni matematiche passano in secondo piano rispetto alla vicenda che la vede protagonista, ma è interessante vedere la lungimiranza con la quale ha proposto il sistema eliocentrico, andando contro il grande Tolomeo, e lo studio di mondi a più dimensioni.

Per il poco risalto che la sua vita ha avuto nel passato (difficilmente nominata quando si parlava dei matematici del passato), pareva che Cirillo avesse avuto ragione di lei, riuscendo a far dimenticare la sua esistenza: questo libro ce la descrive finalmente nella sua umanità e nella sua tensione verso la verità.

 

Questo libro è ora pubblicato con il titolo "Ipazia muore", l'autrice usa il suo vero nome, Maria Moneti Codignola, e la casa editrice è La Tartaruga Edizioni.

Pubblicato in Libri
Etichettato sotto
Pagina 10 di 17

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy