Visualizza articoli per tag: matematica

Mercoledì, 04 Gennaio 2017 10:26

Storia umana della matematica

Il libro di Chiara Valerio non è semplicemente la storia “di sei matematici veri e uno finto”, come recita la copertina: è qualcosa di diverso, è qualcosa di più. Cominciamo dal percorso dell’autrice: “Mi sono iscritta alla facoltà di matematica perché nel 1996 ho fallito l’esame di ammissione alla classe di lettere della Scuola Normale. La delusione era stata tale da condurmi quasi immediatamente alla certezza spocchiosa che mai nessun altro fallimento mi sarebbe toccato.” Cosa può aspettarsi dalla matematica dopo una scelta avvenuta in simili circostanze? “Non so che cosa mi aspettassi dalla matematica, quando nell’ottobre del 1996 mi sono iscritta all’università, ma ero certa fosse il contrario, l’antipodo di ciò che amavo.” Il fatto che la Valerio abbia dedicato dodici anni della sua vita alla matematica, con tanto di dottorato e post-dottorato e poi abbia scritto un libro come questo è la dimostrazione di quanto abbia imparato ad amarla, complice forse anche la professione del padre, fisico. Ma la convivenza dei due amori pervade ogni pagina di questo libro, che è innanzi tutto la storia dell’autrice stessa, considerati i riferimenti autobiografici, e delle sue numerose letture. Il linguaggio è informale, come dimostrato dalle numerose battute, anche se il modo di scrivere è a tratti contorto, quasi come se si trattasse di un flusso di pensieri che vagano tra matematica e letteratura.

Il primo capitolo è dedicato a János Bolyai e al padre Farkas, ma soprattutto alla nuova geometria nata dalla negazione del Quinto Postulato; nel secondo capitolo, il protagonista è Bernhard Riemann, ma il linguaggio scelto è quello della letteratura, visto che con Flatlandia di Abbott l’autrice sembra proporci un’immagine semplificata degli studi di Riemann. Nel terzo capitolo, ecco il calcolo delle probabilità, con Pierre-Simon Laplace, al quale l’autrice non risparmia la propria antipatia. Mauro Picone, con la balistica, è il protagonista del quarto capitolo: è la parte più densa di aneddoti e spiega, in parte, la nascita della matematica applicata in Italia (non dimentichiamo l’Istituto per le Applicazioni del Calcolo intitolato proprio a Mauro Picone). Nel quinto capitolo, il protagonista è un fisico, Lev Landau, con la sua sorprendente vicenda: è nominato come il fisico che morì due volte, o che visse due volte, a seconda dei punti di vista. Il penultimo capitolo, dedicato a Norbert Wiener, dà spazio al problema del rapporto tra l’essere umano e le macchine, partendo dalla storia narrata nel romanzo di Villiers de L’Isle-Adam del 1886, “Eva futura”. L’ultimo capitolo è il racconto delle scelte dell’autrice e del suo percorso in ambito matematico e non solo. 

Pubblicato in Libri
Mercoledì, 28 Dicembre 2016 16:45

Ciao, sono Zero

La simpatica storia dello Zero, con vignette colorate e tanta semplicità, è alla portata anche dei più piccoli. Il libro appartiene alla Collana “I genietti di Valentina”, che si rivolge a bambini dai 6 ai 10 anni. Curata da Luca Novelli, conta al momento quattro pubblicazioni, dedicate rispettivamente ai Robot, al Tempo e alla Terra, Gea.

 

Nel capitolo zero, ovviamente non c’è nulla, visto che lo Zero rappresenta, appunto, il Niente.
Nel capitolo uno, c’è la presentazione: “Sono Zero. In realtà non dovrei dire niente e non dovrei neppure essere disegnato. Se si è niente, si è niente e basta.” Per millenni l’umanità ha fatto a meno dello zero, visto che per contare non era così necessario: i Sumeri avevano dato un segno e un nome a molti numeri e usavano l’abaco per svolgere i propri calcoli, gli Egizi avevano un segno apposta per rappresentare il dieci, i Cinesi usarono, per rappresentare i numeri, bastoncini e loro composizioni. Solo i Maya, nel Centro America, usarono lo Zero, mettendolo all’inizio del proprio sistema di numerazione. Gli Antichi Greci, seppur così bravi in geometria, per i numeri usavano le prime lettere dell’alfabeto e i Romani usavano una “tavoletta dove si ponevano delle pietruzze”, ovvero i “calcoli”.
“Passano i millenni, si fanno tanti conti e finalmente appaio all’orizzonte. Anche se è difficile dire che all’orizzonte è apparso niente. Accadde in India tra elefanti e statue con molte braccia.” L’invenzione degli Indiani arriva fino agli Arabi, in particolare a al-Khwarizmi, l’inventore dell’algebra e infine a Fibonacci, che “diventerà un mago dei numeri”. L’arrivo delle cifre indo-arabiche in Europa scatenerà una “guerra” che durerà diversi decenni, ma “la praticità della nuova numerazione diventa pian piano evidente a tutti”. Da quel momento, lo Zero sembra diffondersi ovunque, tanto che al giorno d’oggi sarebbe impossibile farne a meno. 

Pubblicato in Libri
Etichettato sotto
Mercoledì, 28 Dicembre 2016 16:34

Pitagora e il numero maledetto

Il libro appartiene alla collana “Lampi di genio” di Editoriale Scienza che raccoglie le biografie di grandi scienziati, raccontate e illustrate da Luca Novelli. Tradotti in venti lingue, i testi sono diventati anche un programma televisivo, ideato, realizzato e condotto dallo stesso Luca Novelli per Rai Educational e trasmesso da Rai 3.

Ogni libro della collana ha la stessa struttura: i grandi scienziati raccontano la propria storia in maniera colloquiale, in forma di brevi capitoli illustrati, al termine dei quali c’è un piccolo box, come se si trattasse di una voce fuori campo, che focalizza la nostra attenzione su alcuni sviluppi importanti o piccoli approfondimenti.

Al termine del libro, un piccolo dizionarietto illustrato, per chiarire gli eventuali dubbi.

 

Che cosa c’è nel libro dedicato a Pitagora ce lo dice direttamente l’autore all’inizio:

“Che cosa c’è in questo libro… Ci sono io, Pitagora di Samo, voce narrante. C’è la mia infanzia e i miei primi maestri. Ma c’è anche il ricordo delle mie… vite precedenti. Ci sono le mie avventure in Medio Oriente, in Egitto e a Babilonia. Ci sono i miei contrasti con il tiranno Policrate. C’è la mia scuola a Crotone con i miei mille allievi ‘amanti della conoscenza’. Ci sono le mie idee sulla musica, sulla matematica e sulla buona alimentazione. C’è il famoso teorema che porta il mio nome e la scoperta di un numero maledetto. E infine c’è un dizionarietto di termini… pitagorici.”

 

Pubblicato in Libri
Martedì, 27 Dicembre 2016 16:30

L'uomo che credeva di essere Riemann

Il 7 aprile del 1997, Ernest Love – nome fittizio per un matematico di rilievo nel campo accademico mondiale – riceve una mail da Eugenio Donecan, un altro matematico, che dichiara di aver dimostrato l’ipotesi di Riemann. Ernest scoppia a ridere e poi comincia a dire frasi senza senso. Viene chiamato il dottor Benedetti, illustre psichiatra, per risolvere quello che sembrerebbe uno sdoppiamento di personalità: Love, infatti, si crede Riemann, pur ricordando ancora molto bene il proprio passato di matematico del XXI secolo. Attorno a lui, alcune persone sembrano avere a cuore la sua reputazione e chiedono al dottor Benedetti di seguire il nuovo paziente con grande riservatezza. Dietro l’ipotesi di Riemann, emergono interessi economici non indifferenti, perché sulla sua mancata soluzione si basano tutti i sistemi crittografici attualmente in uso.
“Tutti gli zeri non banali della funzione zeta hanno parte reale 1/2”, recita l’ipotesi. Per il dottor Benedetti è difficile capirne il senso e l’autrice trova il modo di spiegarci, con una storiella, l’enunciato. Nel tentativo di smuovere il suo paziente, Benedetti decide di accompagnarlo nella villa di alcuni amici, dove accade un imprevisto: incontrano Filippo, il nipote del custode, un vero appassionato di matematica. Tra Love e Filippo c’è una grande sintonia e cominciano a parlare di matematica: Godfrey Hardy, Ramanujan, André Weil, Persi Diaconis sono l’oggetto dei loro discorsi. Love si spinge anche oltre: nella sua immedesimazione in Riemann, racconta a Benedetti della sua amicizia con Dirichlet ed è davvero bello il racconto dell’attimo in cui, durante una festa, Riemann ha avuto l’ispirazione e ha scoperto l’enunciato che porta il suo nome. 
In cerca di ispirazione, Benedetti legge un libro di logica nel corso della notte e capisce che l’ipotesi di Riemann può essere la chiave che aprirà la porta della libertà per Ernest…
 
Ottima la competenza con cui l’autrice affronta un tema così difficile come l’ipotesi di Riemann, rendendocela comprensibile con metafore e storielle. Inoltre, è interessante l’incipit: la mail di Eugenio Donecan è stata scritta realmente, ma da Enrico Bombieri, proprio nel 1997 in occasione di un pesce d’aprile. L’inizio è quindi reale, mentre la vicenda dello sdoppiamento di personalità di Love è l’occasione per ripercorrere i momenti salienti della vita di Bernhard Riemann. Nel libro trovano posto anche alcuni aspetti della vita personale dell’autrice: il giovane Filippo rappresenta il piccolo Filippo nominato nella dedica, un ragazzo per il quale il Signore ha deciso che sarebbe stato un ragazzo autistico e non un matematico. Anche i luoghi sono quelli della vita dell’autrice: villa Necchi Campiglio esiste realmente a Milano, una dimora storica dall’importante architettura.
Un romanzo che è un piccolo gioiello: interessante, alla portata di tutti e coinvolgente. 
Pubblicato in Libri
Giovedì, 01 Dicembre 2016 14:22

Storia di pi greco

“C’è un numero che da anni mi perseguita. È una persecuzione dolce, che mi rende complice felice più che vittima indifesa, eppure quella presenza è continua, incombente, assillante.” Così esordisce Pietro Greco, che da quando aveva sei anni ha deciso di “seguire le vicende di questo numero fondamentale”. E quanto sia fondamentale, per la matematica ma non solo per lei, lo scopriamo, pagina dopo pagina, in questa breve storia della matematica, che comincia con i Babilonesi e si conclude con il pi-day, in un crescendo di sorprese e curiosità, visto che psembra essere davvero ovunque!

Archimede è il protagonista della prima metà del percorso, considerato che il primo capitolo si intitola “Prima di Archimede” e il quinto “Dopo Archimede”. Non potrebbe che essere così: Archimede, con il suo metodo di esaustione, ha anticipato il concetto di limite, proponendo quello che l’autore chiama un “metodo scientifico” per calcolare pe, senza altro strumento se non la sua mente, ha trovato un valore di questa costante estremamente preciso. Nella Grecia Antica tanti altri hanno legato il proprio nome a questa costante: basti considerare, per avere un’idea della sua importanza, i tre problemi dell’antichità, fra cui figura, appunto, la quadratura del cerchio oppure, citando i sempiterni “Elementi” di Euclide, il terzo postulato “dato un punto e un segmento è sempre possibile ottenere un cerchio”.

Con il sesto capitolo si torna in Europa, dopo la povera parentesi Romana e il lavoro intenso degli Indiani e degli Arabi, con Fibonacci e il suo “Practica geometriae”, pubblicato nel 1220. Nel XVI secolo, i tempi sono ormai maturi per ideare nuovi percorsi ed è il turno di Viète, con un metodo alternativo a quello di Archimede e, soprattutto, l’utilizzo di un’espressione analitica dove “vi fa capolino un assaggio di calcolo infinitesimale”. A questo punto, “la partita di caccia dei digit hunters è iniziata” e arriveremo alle 808 cifre decimali del 1948, senza l’utilizzo di alcuno strumento elettronico. Il calcolo infinitesimale di Newton e Leibnitz apre nuove porte anche a pe finalmente, nel 1706, i tempi sono maturi per dare un nome a questa costante: il nome viene proposto da William Jones, ma è la fama di Eulero che renderà universale la notazione tutt’ora in uso.

Pietro Greco ha setacciato tutta la storia della matematica, lo dimostrano le numerose citazioni di Kline e Boyer, alla ricerca del pi greco e questo dimostra come lo studio di p sia stato una presenza costante nel percorso di ogni matematico. La storia è rapida, Greco non ci risparmia i particolari, ma al tempo stesso il ritmo è incalzante. Il libro è semplice e alla portata di tutti, ma la leggerezza del testo non ci induca a considerarlo banale: la semplicità del percorso è una ricchezza ulteriore e un invito a ulteriori approfondimenti. 

Pubblicato in Libri
Mercoledì, 23 Novembre 2016 08:29

Dio e l'ipercubo

Nel leggere il libro di Malaspina mi è sembrato di fare una treccia: matematica, teologia e vicende personali dell’autore si cedevano il passo a vicenda, riconducendo al tempo stesso l’una all’altra. Da un lato le nozioni della matematica moderna, con la loro complessità e il loro rigore, dall’altro le più misteriose verità di fede, al centro le vicende personali che probabilmente sono state la causa di questo percorso. Esattamente come gli artisti ci illustrano le vicende della vita di Cristo con i loro dipinti, Malaspina usa la bellezza e il linguaggio simbolico della matematica per condurci ad una Verità più grande.

L’Incarnazione del primo capitolo, che non a caso è ambientato a Nazareth, è indagata tramite la teoria degli insiemi infiniti di Cantor: l’uomo è l’insieme di cardinalità finita che, per quanto spirituale, non potrà mai diventare un insieme di cardinalità infinita e quindi raggiungere Dio. Tramite l’Incarnazione, l’infinito si è abbassato fino al finito, rendendo possibile un avvicinamento. Il Regno di Dio del secondo capitolo ha inizio a Elea, con il tentativo di Achille di raggiungere la tartaruga: così come un intervallo di lunghezza finita si può dilatare fino a diventare una retta, così la Pasqua diventa il faro che illumina la storia dell’umanità. Ecco quindi che gli spazi metrici, con la loro complessità, diventano oggetti semplici che ci guidano alla scoperta del Regno. Il terzo capitolo è dedicato all’amore di Dio e, partendo da Calcutta e con l’uso della topologia, l’autore ci guida alla scoperta della terza virtù teologale, dopo che fede e speranza sono state le protagoniste dei capitoli precedenti.

Oggetti matematici, racconti evangelici e digressioni personali sono i tre ingredienti che rendono unico questo libretto: il percorso non è banale e forse non è alla portata di tutti, ma il titolo stesso stimola la nostra curiosità e invoglia a scoprire qualcosa di più. Dell’ipercubo si parla nel primo capitolo e credo che questo possa essere l’occasione per spiegare meglio, a un potenziale lettore, in cosa consista questo libretto: esattamente come è impossibile immaginare la quarta dimensione, per quanto matematicamente non sia difficile maneggiarla, è impossibile per l’uomo avere un’immagine del mistero divino. Ecco, quindi, che i quattro Vangeli, con il proprio punto di vista diverso e complementare, diventano un modo per avvicinarci al mistero, esattamente come l’ipercubo, che non può essere immaginato, è presentato nel proprio sviluppo tridimensionale con otto cubi.

L’autore non ha l’obiettivo di confutare la tesi degli atei e nemmeno vuole dimostrare l’esistenza di Dio: Malaspina usa le sue due passioni per guidarci in questo percorso ricordandoci che “Il mestiere del matematico consiste soprattutto nel trovare legami tra oggetti apparentemente lontani e modellizzare in qualche modo la realtà che osserva”.

Pubblicato in Libri
Venerdì, 12 Agosto 2016 11:42

Caccia allo zero

Il primo incontro di Amir D. Aczel con i numeri è stato così folgorante da restare impresso nella sua memoria: aveva cinque anni e, durante una crociera sulla ss Theodor Herzi – capitanata dal padre – è stato accompagnato da Laci, steward del capitano, ma anche brillante matematico laureatosi all’Università di Mosca, al casinò di Montecarlo. Per Aczel i numeri sono magici: “Mi sono innamorato della loro magia, associandoli nella mia mente a qualcosa di affascinante e proibito” e questo incontro si rinnova anche al Partenone, con i numeri dei Greci che erano in realtà lettere dell’alfabeto, e a Pompei, con i numerali dei Romani. È proprio durante l’infanzia, grazie all’influenza di Laci, che Aczel decide di dedicare la propria vita alla ricerca di una risposta sull’origine dei numeri.

Nel 1972, dopo aver prestato il servizio obbligatorio nell’esercito di Israele, approfitta del passaggio offertogli dal mercantile capitanato dal padre, per raggiungere gli Stati Uniti: si appresta a diventare uno studente all’Università della California, a Berkeley ed è ancora Laci a parlargli di un archeologo francese che “potrebbe aver trovato qualcosa sui numeri in Asia, alcuni decenni or sono; qualcosa d’importante a proposito del numero zero.” Laci non ricorda i dettagli e Aczel sembra dimenticare questa storia per un po’. Nel 2008, la telefonata di Andrés Roemer, conduttore di spettacoli televisivi molto popolari, lo invita a parlare della teoria delle probabilità durante una conferenza internazionale: per Amir e la moglie, Debra, è l’occasione per visitare il Museo Nazionale di Antropologia di Città del Messico. È qui che, dopo aver visto la Pietra del sole azteca, i due coniugi assistono alla proiezione di un video sulla matematica mesoamericana. Il sistema numerico dei Maya, sviluppatosi in completo isolamento rispetto al resto del mondo, riaccende la passione di Amir D. Aczel per la ricerca delle origini dello zero. È così che, nel 2009, approfondisce i propri studi in tal senso e comincia a progettare un viaggio in India.

Nel gennaio del 2011, Aczel incontra a Nuova Delhi Chandra Kant Raju, professore che sostiene che la matematica è nata in India, non nell’Antica Grecia: “Lo zero, il numero, e il nulla buddhista sono una cosa soltanto. Il nulla è un concetto filosofico profondo, ed è da lì che arriva il nostro zero.” Studiando gli scritti degli storici della scienza, Aczel si confronta con l’ipotesi di Moritz Cantor, secondo il quale i numeri hanno avuto origine in India e con l’aggressività di George Rusby Kaye, per il quale lo zero ha avuto origine in Europa.

Al rientro dall’India, Aczel si trova a un punto morto e, per superare l’impasse, la moglie lo invita a studiare altri sistemi numerici. Per caso, trova online la descrizione del matematico Bill Casselman, dell’Università della Columbia Britannica, che parla di uno zero ritrovato in Cambogia dall’archeologo francese George Cœdès, proprio il personaggio di cui aveva parlato Laci quarant’anni prima. Cœdès parla di una stele ritrovata in Cambogia, indicata come K-127, datata 683 d.C. e sulla quale compariva uno zero. Purtroppo, la stele sembra essere andata perduta: Aczel decide di ritrovarla e presenta una proposta di ricerca alla Alfred P. Sloan Foundation di New York per avere i fondi per i propri studi. All’inizio del 2013, Aczel è in Cambogia ed è grazie ad una serie di incontri fortunati e inaspettati che finalmente si trova al cospetto della stele: il proprietario della Galerie Mouhot di Bangkok, Eric Dieu, gli suggerisce il primo contatto, ma poi ci sono gli espatriati con i quali ha occasione di confrontarsi anche su questioni profonde, come Andy Brouwer, che gli fornisce il contatto di Rotanak Yang, il cui padre è il direttore della Angkor Conservation (dove troverà la stele), e Jean-Marc con il quale si trova a parlare proprio di filosofia della matematica. Per risolvere l’ultimo problema legato alla stele, Aczel incontra anche Hab Touch, un personaggio carismatico e molto preparato, che lavora per il Ministero della Cultura: il 9 aprile del 2013, si conclude l’avvincente ricerca di Aczel, grazie alla mail che gli conferma la collocazione della stele presso il Museo Nazionale della Cambogia a Phnom Penh.

 

Un libro che è il racconto di un percorso, sia esteriore che interiore: Aczel viaggia per il mondo alla ricerca dello zero, ma il viaggio avviene anche nella sua testa, visto che per una tale ricerca è necessario studiare e approfondire l’argomento. Leggere questo libro è avventurarsi nel percorso di Aczel, attraverso la storia della matematica, attraverso lo studio della filosofia orientale dove è nato il concetto di zero, attraverso gli incontri che l’autore ha fatto nell’ultima parte della sua vita. Colpisce, infatti, sapere che la ricerca dello zero si è conclusa nell’aprile del 2013 e l’autore è mancato un paio di anni dopo aver realizzato il suo sogno di trovare l’origine dei numeri.

Pubblicato in Libri
Lunedì, 01 Agosto 2016 11:12

Piccolo libro delle curiosità sulla scienza

Sei sezioni per un totale di 42 capitoletti: la manciata di pagine dedicata a ogni capitoletto consente una lettura poco impegnativa, saltando da una curiosità all’altra o procedendo lungo il percorso che l’autore, il matematico Paolo Gangemi, ci propone. Il fatto che la lettura possa procedere spedita, anche sotto l’ombrellone, non ci deve trarre in inganno: gli argomenti proposti, le curiosità mostrate nel libro, non sono certo banali, ma sono alla portata di tutti e la leggerezza dello stile, con le battute colme di umorismo, rende semplice anche il contenuto più difficile.

La prima sezione, “L’alfabeto della natura”, è dedicata alla matematica e il titolo sembra richiamare la ben nota citazione de “Il Saggiatore” di Galileo Galilei. Gli argomenti affrontati non sono difficili: il teorema di Pitagora, un po’ di teoria dei numeri e le unità di misura dell’informatica, ma ciò di cui Gangemi parla sono i fondamenti della matematica, come il suo linguaggio e la necessità della dimostrazione. La seconda sezione è dedicata alla fisica, a partire dalla velocità della luce, proseguendo con un’importante riflessione sulle unità di misura, suggerita dalle scale di misurazione della temperatura, fino a rispondere alla domanda su cosa potrebbe succedere se si tentasse di raggiungere la parte della Terra diametralmente opposta a quella in cui ci troviamo.

Con la terza sezione, si indaga l’affascinante mondo celeste: dalla Luna ai pianeti che orbitano attorno al Sole, fino a domandarsi se il terremoto sia un fenomeno solo terrestre o se riguardi anche altri corpi celesti. La geologia della quarta parte allarga i nostri orizzonti a partire dai vulcani delle Hawaii fino all’interessante (e per me sconosciuta) bridgmanite, il minerale più diffuso sul nostro pianeta, eppure più invisibile: “abbiamo dovuto aspettare che ci cadesse letteralmente dal cielo”. Dai reattori nucleari naturali fino all’Antartide, passando attraverso le laghee si giunge alla scala dei terremoti: se siete ancora convinti che basti la scala Richter per stabilire l’entità di un evento sismico, resterete stupiti dal fatto che il nome giusto dovrebbe essere scala Kanamori.

La biologia della quinta sezione ha la sua origine nella Preistoria, ma si può andare avanti indefinitamente – come dimostra la continua rinascita della medusa che ringiovanisce a ogni ciclo vitale – mentre si scopre che, persino nell’ambito scientifico, non è così semplice assegnare i nomi alle nuove specie che vengono scoperte ogni giorno.

L’ultima parte è dedicata alla biomedicina: la riflessione su virus, batteri e antibiotici solleva il sempre attuale problema dell’ignoranza scientifica e lo scoprire che “in Italia, le erronee convinzioni e le cattive pratiche sono peggiori della media europea” potrebbe essere l’incentivo che ci serve per migliorare le nostre conoscenze. Il capitolo dedicato a Henrietta Lacks e alle sue cellule HeLa mi ha colpito più di quello dedicato al Progetto Genoma: è definita “una delle persone più importanti del Novecento, se non dell’intera storia dell’umanità” e io non ne avevo mai sentito parlare!

Dalla prima all’ultima pagina, il libro di Gangemi è un invito all’approfondimento: conquistati dalle curiosità elencate nel testo, si sente il bisogno di conoscere qualcosa di più su alcuni argomenti. Insieme ai numerosi suggerimenti, leggendo questo libro non manca lo svago, uno svago stimolante e intelligente, come dimostrato dalla conclusione dell’ultimo capitolo, con la citazione di Italo Calvino.

Pubblicato in Libri
Venerdì, 22 Luglio 2016 15:37

Siamo tutti matematici

Il testo di Atiyah appartiene alla collana “Dialoghi” della Casa Editrice Di Renzo, perciò è il “risultato di approfondite discussioni con l’autore”, che riflette sulla propria vita e sulla materia oggetto della sua ricerca. Il libretto è non solo il racconto della vita dell’autore, delle sue ricerche, dei risultati ai quali è arrivata la matematica, ma anche, più in profondità, un modo per Atiyah di analizzare la propria passione per questa difficile materia e il percorso creativo che porta ad elaborare nuovi teoremi e nuovi ambiti di ricerca.

Nel primo capitolo, “Verso la matematica”, l’autore parla della propria vita e di come sia approdato allo studio della matematica, anche se, secondo il padre, si poteva intuire il percorso che avrebbe fatto già da quando era piccolo. Indeciso tra matematica e chimica, Atiyah ha scelto la prima, consapevole che non si trattava solo di imparare a memoria una serie di dati, ma che era soprattutto una “questione di comprensione”. Lo sviluppo della matematica “dipende dall’abilità nell’afferrare i concetti, dalla profondità di comprensione dei fondamenti e dalla capacità di trasferirli ai giovani nel modo più semplice possibile” e, per diventare bravi matematici, è indispensabile avere buoni maestri, che insegnino l’equilibrio tra la capacità di risolvere problemi – e quindi il rigore dei singoli passaggi – e la “qualità di volteggiare liberamente nell’aria come un poeta”.

Il secondo capitolo, “La K-teoria e le stringhe” è il resoconto degli studi dell’autore, che è stato insignito, insieme a Isadore M. Singer, del premio Abel nel 2004. Nel testo, viene riportata la motivazione addotta dall’Accademia per l’assegnazione del premio per il teorema dell’indice, nato dalla collaborazione tra i due matematici, che ha “mutato il paesaggio della matematica”, mostrando “come calcolare in maniera geometrica il numero di soluzioni di un certo tipo di equazioni differenziali”. Il teorema è anche la dimostrazione di come il matematico, in genere, abbia bisogno di collaborazione con altre persone per sviluppare le sue idee.

Il terzo capitolo, “La matematica del XX secolo”, tratta degli sviluppi della matematica dell’ultimo secolo, con il passaggio dal locale al globale, l’aumento delle dimensioni, il passaggio dal commutativo al non commutativo, dal lineare al non lineare e lasciando ampio spazio alla dicotomia tra geometria e algebra. È davvero interessante il punto di vista dell’autore che solo occasionalmente lascia emergere la sua opinione, la sua preferenza per la geometria: riconosce comunque che, visto che l’algebra riguarda la manipolazione del tempo e la geometria quella dello spazio, sono due diversi punti di vista in matematica.

Nel quarto capitolo, “La creatività nella ricerca scientifica”, Atiyah ci racconta il lavoro del matematico, che viene definito come un “processo creativo”, che, innanzi tutto, gli piace e lo diverte.

L’ultimo capitolo, “Scienza e responsabilità”, analizza il ruolo della scienza nella storia, a partire dalla seconda guerra mondiale e dall’organizzazione Pugwash fino ai giorni nostri. “La scienza sta diventando un fattore sempre più dominante, il che significa che aumenterà la responsabilità degli scienziati, in quanto dovranno far sentire – a livello internazionale e collettivo – la loro voce, per obbligare tutti i governi a decisioni sagge e sicure.”

Pubblicato in Libri
Mercoledì, 20 Luglio 2016 08:43

Archimede aveva un sacco di tempo libero

In questo testo, Codenotti ci propone l’infinito nella teoria degli insiemi di Cantor: l’argomento non è semplice, ma è presentato in modo accattivante, grazie al fumetto di Claudia Flandoli che si alterna alla trattazione più rigorosa. L’idea è nata durante le conferenze divulgative che Bruno Codenotti tiene nelle scuole: quale miglior modo di divulgare le conoscenze di un libro? In questo modo, il lettore può scegliere il proprio ritmo e aspettare che tutto sia chiaro prima di proseguire.

L’esplorazione dell’infinito comincia con gli insiemi finiti, così come nel fumetto Giacomo comincia l’esplorazione della vita universitaria e incontra Lara, sua compagna di corso. La semplicità degli insiemi finiti non deve indurre a una banalizzazione, come dimostrato dagli importanti concetti spiegati, che si prestano ad essere esplorati con numerosi esempi.

Nel secondo capitolo il problema dei buoi di Archimede e il premio per l’invenzione degli scacchi ci fanno prendere confidenza con numeri così grandi che ci fanno pensare all’infinito e le suggestioni del terzo capitolo, con i testi di letteratura e filosofia, ci aiutano a prendere coscienza del fatto che l’infinito non è dominio solo della matematica.

Il quarto capitolo sancisce il salto dal finito all’infinito e il fumetto è fondamentale per cogliere appieno questo salto: “mondi diversi seguono regole diverse” dice Lara a Giacomo, quando questi cerca di capire il funzionamento di un e-reader rifacendosi ai libri. L’infinità dei numeri e dei punti in geometria ci permette di prendere confidenza con l’infinito matematico, analizzando e confrontando, rimettendo in gioco e ridefinendo i concetti di minore, maggiore e uguale.

Nel settimo capitolo, la spiegazione della differenza tra insiemi continui e insiemi discreti ci è data ancora dal fumetto, che con una semplice ma geniale immagine aiuta a comprendere questa difficile definizione. La conclusione è da capogiro: gli infiniti infiniti matematici non possono che fare girar la testa.

Come sottolinea Giacomo, “infrangere i tabù porta a grandi scoperte”: è questa la descrizione del cammino percorso da Cantor che, nelle sue esplorazioni matematiche, ha incontrato anche numerosi ostacoli proprio da parte dei matematici suoi contemporanei.

 

Il libro si rivolge a un pubblico che abbia fatto propri i concetti della matematica di base, come i ragazzi del triennio delle superiori. Al termine di ogni capitolo, la nota storico-bibliografica consente di esplorare nuovi approfondimenti attraverso letture più impegnative, ma non solo: l’autore presenta anche la vicenda storica di Cantor e alcune curiosità che non hanno trovato spazio nella trattazione. 

Pubblicato in Libri
Pagina 5 di 17

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy