Newsletter

Newsletter (66)

Mentre sta per concludersi questa corsa verso la maturità, nella girandola degli scrutini e degli adempimenti di fine anno, mi sono persa l’appuntamento dell’ultima newsletter. E, proprio perché al momento penso solo all’imminente esame, questa newsletter sarà una specie di risposta ad un eventuale documento preparato per l’esame orale. Questo documento è un po’ particolare: al centro del foglio la parola matematica, compito del candidato è collegare ad essa le altre materie!

ITALIANO: Leopardi, come gli esercizi di matematica che lui stesso si è trovato a svolgere all’esame a 12 anni (che potrebbero essere un buon modo per mettersi alla prova), come il bicentenario dell’Infinito celebrato recentemente, ma cosa c’entri realmente con la matematica lascio a voi scoprirlo, in questo articolo di MatMedia che offre un elenco di ulteiori articoli da esplorare.

SCIENZE, ovvero il problema del calo delle vaccinazioni: «Il successo dei programmi di vaccinazione può avere un effetto imprevisto e controproducente: indurre le persone a scegliere di non vaccinarsi credendosi protetti dall’immunità di gregge.» La teoria dei giochi può «esplorare come le informazioni sulla prevalenza della malattia influenzino il successo di un programma di vaccinazione», ovvero può offrire una strategia per combattere il calo delle vaccinazioni.

ARTE E FISICA: la struttura simmetrica della natura, evidenziata anche dalla fisica, con l’equivalenza tra massa e energia e la relatività, ha «ispirato alcuni artisti nella creazione di iconiche riproduzioni della simmetria della natura nella propria arte.» Karl Gerstner, un giovane artista degli anni Cinquanta, si ispirò proprio alla simmetria e quindi alla teoria dei gruppi per realizzare le proprie opere come «Aperspective: dodici unità bianche e nere fissate a dei magneti che possono essere riposizionati in infinite combinazioni all’interno di una cornice fissa, come la luce che si muove nel cosmo di Einstein, inteso come un infinito limitato.» D’altra parte, secondo gli psicologi tedeschi dell’inizio del Ventesimo secolo, l’uomo è portato a percepire i pattern, e chiamarono questa abilità «“Gestalt” (la parola tedesca per “figura” o “forma”)». Ma il legame tra matematica e arte è ancora più antico di quanto si pensi, basti ricordare la complessa geometria del disegno islamico.

FILOSOFIA: Michel Serres, secondo Wikipedia, è stato un filosofo e scrittore francese, eppure sui siti matematici, in occasione della sua recente scomparsa, si è ricordato soprattutto l’opera Le origini della geometria, edito da Feltrinelli (1994), che «costituisce una lettura unica per la vastità e la profondità delle conoscenze messe in campo. Una miniera di idee e di concetti che si offrono al lettore come gemme scintillanti di forme espressive e di una varietà lessicale che inebria le menti di significati e immagini. Alle ‘origini’ della geometria ha dedicato trentacinque anni della sua vita: tanto confessa di aver impiegato per scrivere il libro. E il frutto di una riflessione così lunga e costante si coglie appieno.»

STORIA: la seconda guerra mondiale, in genere, è un catalizzatore di argomenti durante l’esame, ma in pochi sanno che la vittoria degli alleati avrebbe ritardato due anni se non ci fosse stato l’apporto dei matematici, in particolare di Alan Turing. Dalle sue intuizioni è nata l’informatica, eppure è morto solo, sofferente, con il peso di una condanna per la sua omosessualità. «“Trascurato” è il titolo della serie di nuovi necrologi che il New York Times dedica a persone straordinarie la cui morte, a partire dal 1851, non sono state riportate sul Times a causa del loro orientamento sessuale». Per lungo tempo ci si è dimenticati di Turing, ma anche di Elizebeth Smith Friedman, «la donna che per decenni ha decifrato i messaggi in codice dei criminali, da Al Capone ai nazisti». Americana, con una laurea in letteratura inglese, appassionata di Shakespeare, «avrebbe tanto voluto avere un’occupazione legata al suo amore per i libri e così un giorno chiese a un bibliotecario di trovarle un lavoro. Lui glielo trovò, cambiandole la vita». Divenne una risorsa fondamentale nella lotta alla criminalità organizzata durante il proibizionismo, visto che decodificava i messaggi radio dei contrabbandieri, ma diede un enorme contributo anche durante la seconda guerra mondiale. Scomparsa nel 1980 è oggi «ricordata come una pioniera della crittoanalisi: nel 2002, l’Nsa ha intitolato a Elizebeth e al marito William un edificio all’interno del suo complesso, restituendole il posto nella storia che le apparteneva di diritto».

INGLESE: The Independent propone il più breve test di intelligenza, solo tre domande: “1. Una mazza e una palla costano £1.10 in totale. La mazza costa £1.00 più della palla. Quanto costa la palla? 2. Se per 5 macchine servono 5 minuti per fare 5 oggetti, quanto tempo serve a 100 macchine per fare 100 oggetti? 3. In un lago, ci sono delle foglie di ninfea. Ogni giorno, l’estensione del lago coperta dalle foglie raddoppia la sua grandezza. Se servono 48 giorni per ricoprire l’intero lago, quanti giorni servono per coprire metà lago?” Per arrivare alle soluzioni ci sono due alternative: ragionare matematicamente o conoscere l’inglese e leggersi le soluzioni.

MUSICA: il mitico Lorenzo Baglioni, laureato in matematica, approfitta della maturità per uscire con un nuovo pezzo che permette un ripasso generale...

Scherzi a parte, la maturità è davvero imminente ed il gioco sta per farsi duro. È bene correre ai ripari: ecco per voi qualche consiglio da parte mia su Redooc per arrivare al traguardo più che preparati!

Concludo la breve carrellata di oggi con un video sul metodo sperimentale, realizzato dai miei studenti di seconda nell’ambito di un lavoro di ricerca su Galileo Galilei. Magari può tornarvi utile per introdurre l’argomento quando ci sarà occasione di parlarne: Galilei sembra un po’ uno scienziato pazzo che fa osservazioni banali sulla realtà, ma magari abbassare il suo livello può essere un modo per sentirlo più vicino.

 

Buona matematica! Ci sentiamo tra TRE settimane!

Daniela

Cominciare la newsletter con un’intervista a Samuele Maschio, ricercatore in logica matematica presso il Dipartimento di Matematica dell’Università degli studi di Padova, può essere un azzardo, visto che l’argomento è abbastanza elevato. Oggetto dell’articolo, infatti, è il libro di Samuele, dedicato alle dimostrazioni matematiche: «la tecnica dimostrativa è il tratto distintivo della matematica come scienza, quindi, se si vuole fare il matematico, bisogna imparare a scrivere una dimostrazione». Come impegno di ragionamento, i problemi alla Fermi non sono da meno: «Si racconta che Enrico Fermi fosse solito porre ai propri studenti strane domande come “Quanti sono gli accordatori di pianoforte a Chicago?”». Fermi poneva queste domande, perché voleva «sviluppare nei suoi studenti le capacità di ragionamento utili a risolvere i problemi che si trovano ad affrontare tutti gli scienziati nel loro lavoro di ricerca». E imparare a risolvere questo genere di problemi potrebbe essere utile anche per evitare di credere a tutte le fake news in circolazione, visto che quando sentiamo una notizia ed essa è corredata da numeri siamo portati, istintivamente, a darle maggior credito.

I problemi per matematici in erba possono essere un ottimo modo per cominciare ad appassionarsi: qual è il numero intero, di due cifre, che moltiplicato per 4,5 dà il numero che si ottiene scambiando tra loro le cifre del numero di partenza? Una scatola cubica di spigolo 10 cm avrà la stessa capienza di una scatola a forma di parallelepipedo rettangolo con gli spigoli di 9 cm, 10 cm e 11 cm?

La soluzione dei problemi, lo sappiamo, non appartiene solo alla matematica, ma forse difficilmente la accosteremmo alla letteratura. Eppure se consideriamo gli esempi del passato, uno su tutti il problema dell’età di Diofanto, è spesso capitato di trovare dei problemi espressi in rima o delle soluzioni espresse in rima e quindi non dovrebbe stupire la soluzione poetica di Elio Pagliarani. Eppure stupisce, perché è una soluzione originale, inaspettata, non formalizzata con il linguaggio matematico: si tratta dell’algebra del ConiglioPollo e ci viene presentata da Adriana Lanza della sezione di Roma della Mathesis. Questo post di Annalisa Santi, invece, ricorda una filastrocca, che è in realtà uno dei più antichi problemi noti, riportata nel papiro di Rhind, uno dei più antichi documenti matematici conosciuti. Il problema è fatto da potenze di 7, numero che «era considerato sacro dagli Egizi che vi fondarono gli elementi di tutte le scienze».

Per i bambini della primaria, potrebbe essere utile anche qualcosa più al passo con i tempi, come l’app educativa Maggie – il tesoro di Seshat, che ultimamente ha vinto a Roma il premio dedicato alle eccellenze del mondo dei videogiochi. Non si tratta solo di un gioco, visto che ha anche intenti educativi e promuove la parità di genere nelle discipline STEM. Non per niente il gioco è «promosso da Soroptimist International, associazione mondiale di donne che si impegna per la promozione dei diritti umani e del potenziale femminile».

Parlando di numeri, non si può non nominare lo zero, che secondo questo breve documentario della BBC (in inglese e con sottotitoli in inglese) è stato, nel corso della sua storia, inimmaginabile, impensabile, irriverente e anche illegale. Nel corso dei secoli, è emerso e scomparso e riemerso ripetutamente, è stato considerato un lavoro del diavolo, tanto che quando in inglese si dice a qualcuno che è “naughty”, ovvero “disobbediente”, si sta scegliendo un termine che deriva da “nought”, ovvero zero, ovvero l’antitesi di Dio. Prima dello zero c’era solo un piccolo puntino per permetterci di vedere una differenza, ad esempio, tra 701 e 71, ma da Brahmagupta in poi ha cominciato a vivere una vita sua. Ha viaggiato dall’India verso l’Iraq, ha raggiunto l’Europa e, grazie a Fibonacci, ha fatto il suo ingresso tra i mercanti. Grazie a Leibniz in Germania e a Newton in Inghilterra, con lo sviluppo del calcolo infinitesimale, abbiamo avuto modo di gestire anche la divisione per zero. Senza lo zero, non avremmo fatto scoperte fondamentali in fisica, in biologia, in economia, figuriamoci in matematica. Nel 1948 Claude Shannon introdusse una nuova teoria matematica di comunicazione, i bit, basato su un sistema di numerazione binario con due sole cifre, zero e uno. Senza lo zero, non sarebbe stato possibile vedere il filmato e, allargando il campo, nemmeno preparare questa newsletter: non esisterebbe il mondo che conosciamo oggi!

Senza lo zero non sarebbe esistito questo filmato che collega tra di loro frattali e solidi platonici. Un filmato particolarmente interessante per noi, visto che dopo aver dedicato la scorsa edizione del Festival di BergamoScienza ai frattali, quest’anno ci concentreremo sui poliedri.

E se siete interessati al percorso storico della matematica e ai vari matematici che ne hanno fatto la storia, potrebbe esservi utile la timeline che ci viene offerta da Mathigon. Confesso di aver sempre voluto preparare qualcosa del genere per le mie classi, ma di non essere mai riuscita a portare a termine il progetto... In tema di risorse online, non può mancare un riferimento ai grafici che il New York Times propone settimanalmente: il nome della rubrica è “What's going on in this graph?”, ovvero “Cosa sta succedendo in questo grafico?” ed è un invito per gli studenti, e gli insegnanti, a discuterlo, online o in classe.

In questa chiusura di anno scolastico, mentre le scadenze (per gli insegnanti) si fanno pressanti e le medie da rimodellare (per gli alunni) si fanno urgenti, mi piace condividere questa riflessione di Federico Benuzzi. Perché in chiusura di anno scolastico condividere un post che ha per titolo Incipit di una lezione sembra essere una contraddizione in termini. E invece no: innanzi tutto perché non smettiamo mai di modellarci, nemmeno negli ultimi giorni di un’attività e quindi leggere articoli, confrontarsi, riflettere è sempre un’occasione per crescere. Inoltre perché in questo articolo si parla, implicitamente, di matematica: quando si parla di like e di funzionamento dei social, ormai è chiaro, si parla anche degli algoritmi che li fanno funzionare. Infine, cosa non meno importante, ogni insegnante porta in classe non solo ciò che sa, ma soprattutto ciò che è: non si può rinunciare a ciò che si è quando si entra in classe. Perciò se si è abituati al confronto e alla riflessione, si inviteranno i propri alunni a confrontarsi e a riflettere e ogni occasione è buona per confrontarsi, per riflettere, per non uniformarsi alla massa, per crescere…

In conclusione, per gli alunni del quarto anno delle superiori che sono interessati, ricordo il corso di eccellenza di matematica organizzato dall’Università Cattolica del Sacro Cuore di Brescia, che ha come docenti i proff. Degiovanni, Marzocchi, Pellegrini, Musesti e la prof. Pianta. La facoltà di matematica e fisica dell’Università di Brescia si è resa protagonista, nei giorni scorsi, di una analisi del Lago di Garda senza precedenti, per «ricostruire con precisione la storia geologica della formazione del lago di Garda». La cosa è così interessante che se ne è occupato anche il TG1.

 

Buona matematica! Ci sentiamo tra TRE settimane!

Daniela

 

PS: Vi segnalo il post di Luca Perri, riguardante un grande risultato per l’astrofisica, che si conclude così:

«La Storia tesse le sue trame, si dice, e alle volte tira fili che apparivano scollegati fino ad un attimo prima. La Scienza è un tessuto intrecciato da milioni di persone che svolgono piccole azioni, apparentemente insignificanti, su strade illuminate alle volte solo dalla flebile luce della coda di una cometa. Un lavoro che però, magari secoli dopo, dimostra che una comunità riesce ad andare oltre i singoli.

Il filosofo Bernardo di Chartres, quasi mezzo millennio fa (dunque poco prima che voi iniziaste a leggere questo post), scrisse che siamo come nani sulle spalle di giganti, e che salendo sulle loro spalle possiamo vedere più cose di loro e più lontane.

Non potremmo fare ciò che facciamo senza chi ci ha preceduto, anche quando il lavoro di costui rimane nell’ombra. Ognuno di noi sale sulle spalle dei giganti o dei nani del passato, fornendo il suo contributo. Anche se il contributo è quello di un nano alle prime armi, giunto in un osservatorio brianzolo per la sua tesi magistrale, che decide che questa idea di lavorare in un team che crea specchi per un telescopio sull’Etna è intrigante. Anche se, cercando di fare specchi infrangibili, il nano è riuscito non si sa come a rompere un numero incalcolabile di tasselli. Ma alla fine (e alla faccia di chi sostiene che rompere specchi porti solo sfortuna), grazie a tutti gli errori, ai nani e ai giganti, si riesce tutti insieme a guardare più lontano, inseguendo l’orizzonte per scoprire nuovi astri e nuove comete. Nuova cultura che ci faccia capire che il nostro posto nell’Universo forse non sarà di primo piano, ma c’è e dovremmo imparare a preservarlo, in questa nostra piccola oasi di vita sperduta nell’immensa e fredda oscurità.»

Nella scorsa newsletter, non per la prima volta, ho parlato del ruolo dell’errore nell’apprendimento della matematica. Sofia Sabatti, che avevo citato, ne ha approfittato per ricordarmi una frase di Karen K. Uhlenbeck (la prima matematica a vincere il premio Abel): «È difficile essere un esempio, perché ciò di cui hai realmente bisogno è mostrare agli studenti come, nonostante le imperfezioni, si possa comunque avere successo. Tutti sanno che se una persona è intelligente, divertente, carina o ben vestita, avrà successo. Ma è possibile avere successo anche con tutte le tue imperfezioni. Per me ci è voluto il tempo di una vita per capirlo. Riguardo a questo, essere un esempio non è una posizione molto attraente, visto che mette in luce anche tutti i tuoi lati negativi. Posso essere una brava matematica, famosa proprio per questo, ma sono anche molto umana.». Ogni insegnante è quindi un esempio per i propri alunni, pur con tutti i suoi limiti.

La prova di matematica e fisica dell’imminente esame di maturità è un modo per me per trovarmi protagonista di ciò che la Uhlenbeck ha detto: mentre i miei alunni svolgevano la prova di simulazione, il 2 aprile scorso, anch’io mi sono messa alla prova, per capire fino in fondo la reale difficoltà della prova. Inutile dire che ho commesso anch’io qualche errore e, in fase di correzione in classe, ho condiviso con i miei alunni anche i miei errori, facendo notare quale ragionamento fallace mi aveva deviato dalla retta via. Io avrei voluto che loro cogliessero lo stupore di cui sono vittima ad ogni maturità, lo stupore di vedere che i miei alunni fanno il giusto ragionamento, forse grazie ai piccoli semi che io ho sparso nel corso di cinque anni, superandomi proprio nella prova finale, mentre loro si sono lasciati prendere dallo sconforto: «Come possono pretendere che affrontiamo questa prova, se persino lei sbaglia?». Mi è sembrata quindi bellissima la riflessione, sempre attuale anche a distanza di 130 anni, del matematico Enrico D’Ovidio: perché dover ricorrere alla pietà degli esaminatori – che spesso si deve esercitare in fase di giudizio – quando un tema più semplice permetterebbe comunque di «smascherare gli indegni» e lascerebbe «ai migliori l’agio di addimostrarsi tali»? Mathesis riconosce, in tal senso, l’equilibrio dell’ultima simulazione, «in linea con i percorsi didattici e calibrata su un livello medio di preparazione da parte degli studenti». Non posso che concordare e sottolineare che la difficoltà della prova verrà poi stabilita dalla scelta che ogni studente farà di quesiti e problemi, visto che le richieste avevano diversi livelli di difficoltà.

Mercoledì 10 aprile 2019 entrerà nella storia della scienza, grazie alla prima foto di un buco nero. «Più o meno», scrive l’astrofisico Luca Perri il giorno dopo in un post su Facebook, un post che, come era successo con quello delle onde gravitazionali, spiega anche ai più ignoranti cosa è successo, raccogliendo migliaia di condivisioni e like. Luca, innanzi tutto, ci spiega che la foto non è una foto, ma «un’elaborazione grafica di dati radio». Con l’umorismo e l’arguzia che lo caratterizzano, Luca ci racconta delle «120 ore di osservazione in due anni» che «hanno prodotto 10 mila terabyte di dati, che sono stati dati in pasto ai più potenti supercomputer esistenti, affinché li analizzassero. Centinaia di ricercatori di 40 Paesi hanno lavorato con un unico – pacifico – obiettivo: spostare l’asticella della conoscenza un po’ più in alto. Per giungere ad osservare l’inosservabile». Dietro questa immagine ci sono tanta fisica e tanta matematica, ma soprattutto «ci sono almeno 200 astronomi, tecnici, ingegneri e matematici, ognuno con il proprio compito». Katie Bouman, immagine della ricerca, ha 29 anni e tre anni fa, subito dopo la laurea, «ha iniziato a sviluppare l’algoritmo di base, il nucleo della matematica usata nella ricostruzione». Bellissima l’immagine diffusa su Twitter dal MIT, che ricorda Margaret Hamilton con la sua pila di libri che contengono il software che portò l’uomo sulla Luna. Nonostante Katie abbia subito sottolineato che l’immagine era stata realizzata grazie al «talento incredibile di un team di scienziati da tutto il mondo», («No one algorithm or person made this image, it required the amazing talent of a team of scientists from around the globe and years of hard work to develop the instrument, data processing, imaging methods, and analysis techniques that were necessary to pull off this seemingly impossible feat.») la celebrità ha regalato alla Bouman anche alcuni effetti collaterali, purtroppo ormai tipici del web, come gli attacchi sessisti: «Il volto emozionato di Katie Bouman è un messaggio di speranza per il futuro, ma anche un campanello d’allarme dei problemi del presente».

MaddMaths! approfitta del 128° Carnevale della matematica per dare ampio rilievo ad aprile, mese della consapevolezza matematica e statistica. Condividere il Carnevale della matematica con la newsletter equivale a inviarvi una newsletter al quadrato, perciò non faccio ulteriori commenti visto che l’articolo di MaddMaths! si commenta da solo. Voglio solo sottolineare che aprile non è solo il mese della consapevolezza matematica, visto che da qualche anno include la statistica, perché «entrambe le discipline svolgono un ruolo fondamentale nel risolvere molti problemi del mondo reale – la sicurezza di internet, la sostenibilità, le malattie, il cambiamento climatico, i tanti dati che ci circondano, e altro ancora. La ricerca in queste aree si sta sviluppando, trovando continuamente nuovi risultati e applicazioni in settori come la medicina, l’industria, l’energia, le biotecnologie, e l’economia. Matematica e Statistica sono importanti motori di innovazione nel nostro mondo tecnologico, nel quale nuovi sistemi e metodologie diventano sempre più complessi».

Troppo spesso ci si scontra con lo stereotipo del matematico introverso e impegnato solo a studiare formule incomprensibili ai più e, anche se non condividete il pregiudizio, non potrete non apprezzare l’originalità di Tom Lehrer, «cantautore, comico, pianista e matematico statunitense, conosciuto soprattutto per le brevi canzoni umoristiche registrate negli anni cinquanta e sessanta», secondo l’onnisciente wikipedia. Se non avete la pazienza di leggere il testo in inglese che accompagna le canzoni condivise con noi da Adam Atkinson su MaddMaths!, nel tracciare un breve ritratto del cantautore, comico, ecc., potete comunque apprezzarne lo stile con la sua canzone sugli Elementi della tavola periodica del 1959.

Ci siamo appena lasciati alle spalle l'anniversario della liberazione, che ha segnato la fine della seconda guerra mondiale, e questo articolo del noto virologo Burioni sul suo sito MedicalFacts crea un inaspettato collegamento tra morbillo e conflitto mondiale, collegamento reso possibile dalla matematica. Il protagonista della vicenda è Abraham Wald, matematico ebreo classe 1902, che gli alleati devono ringraziare per la sua intuizione: il suo ragionamento ha permesso di corazzare i bombardieri in modo efficace. Il collegamento con il morbillo è semplice e lineare, come ci spiega la conclusione: «La scienza, con il suo metodo, ci permette però di sbagliare il meno possibile, il che significa, alla fine della storia, salvare vite umane».

Il collegamento tra matematica e antifascismo è invece dato dai matematici che si sono esposti per contrastare la dittatura nascente, da Caccioppoli, che girava per le strade con un gallo al guinzaglio, a Vito Volterra, uno dei dodici professori che nel 1931 si è rifiutato di prestare il giuramento di fedeltà al fascismo, per concludere con Mario Fiorentini, matematico e partigiano.

Passando ad un argomento più leggero: nel 73° episodio della sitcom The Big Bang Theory, il fisico teorico Sheldon Cooper, uno dei protagonisti, afferma che 73 è il miglior numero: è un numero primo e anche il suo speculare, il 37, è un numero primo. 73 è il 21° numero primo e 21 è il prodotto delle cifre che lo compongono, 7 e 3. 37 è il 12° numero primo, speculare anche nella posizione rispetto a 73. Chris Spicer, professore del Mornigside College nello Stato dello Iowa, ha dimostrato che 73 è l’unico numero primo a godere di queste proprietà e quindi è davvero un numero speciale.

Senza aggiungere considerazioni sulle prospettive lavorative e occupazionali dei laureati in matematica, basterebbe il riferimento al ruolo della matematica in tante situazioni storiche importanti a spingere verso una laurea in matematica. C’è però anche un interessante stimolo: il bando dell’Istituto Nazionale di Alta Matematica “Francesco Severi” per «l’assegnazione di trenta borse di studio da 4.000 euro ciascuna a neodiplomati che decidano di iscriversi, per il prossimo anno accademico (2019/2020) a un corso di laurea triennale in Scienze matematiche».

Per chi invece non è ancora nella fascia d’età di scelta del percorso universitario e combatte con la matematica della scuola secondaria di primo grado, potrebbero essere utili delle videolezioni di matematica, spiegate in modo semplice e veloce. L’autore è Fabrizio Bercelli, professore universitario in pensione, impegnato come volontario in un doposcuola di Bologna rivolto a ragazzi delle medie e proprio da questa sua esperienza è nato il ciclo di lezioni. «Ho cercato un compromesso fra accessibilità da parte dei ragazzini/e e rigore logico-matematico, spostandomi nei video un po’ di più verso l’accessibilità – il mio target principale sono gli alunni con molte lacune da recuperare».

Concludo con un filmato divertente, che coinvolge la matematica e la fisica, pur parlando di basket. Bastano i muscoli per fare canestro o serve altro? Un cortometraggio davvero divertente, che non mancherò di mostrare in classe la prossima volta che mi capiterà di spiegare il moto parabolico.

 

Buona matematica! Ci sentiamo tra TRE settimane!

Daniela

L’ultimo lavoro di Anna Cerasoli, Quattro artisti che contano, è, come sempre, dedicato alla matematica e ai bambini, ma c’è anche molto altro: il libro crea un ponte tra arte e matematica e permette ai più piccoli di giocare con le forme e con i concetti di base del calcolo combinatorio. Il libro contiene anche un piccolo omaggio ad August Herbin, artista francese del secolo scorso, esponente dell’astrattismo geometrico. Un ulteriore esempio di matematica artistica è offerto dal blog Portale bambini con l’aiuto di Hervé Tullet, l’autore di «Un libro», nel quale i protagonisti sono cerchi colorati: «possiamo trasformarli in personaggi e lasciare che ci aiutino a comprendere la natura magica della matematica». Ed è proprio a partire dal libro di Tullet che il blog propone due attività che possono aiutare ad eseguire anche semplici operazioni di calcolo mentale.

Sofia Sabatti presenta il sito Problemi per matematici in erba: in esso «gli insegnanti sono invitati a lasciare i propri commenti ai problemi presentati [...] È uno strumento didattico gratuito: qualunque insegnante può accedervi e utilizzare nella propria scuola le risorse in esso contenute.» Oltre ai testi dei problemi, ci sono le soluzioni commentate, le osservazioni emerse dalla discussione e la classe nella quale proporre il problema. «I problemi attualmente presenti sul sito si rivolgono soprattutto a studenti della scuola secondaria di primo grado, anche se in realtà molti di essi vanno bene (magari con qualche piccola variazione) sia per bambini più piccoli che per ragazzi più grandi.» Mi è piaciuta in particolare una riflessione di Sofia: «Scontrarsi con problemi “difficili”, ossia non risolubili da parte degli alunni semplicemente applicando una formula o un procedimento già noti, è un’ottima occasione per sbagliare e, di conseguenza, scendere un pochino più in profondità. E se qualche problema dovesse mettere in difficoltà anche i docenti, sarebbe buona cosa cogliere l’occasione per far vedere agli studenti che l’errore è parte del fare matematica anche dei loro insegnanti. Il docente potrebbe mostrare che sbagliare, oltre ad essere normale e per nulla drammatico, è spesso necessario per cogliere gli aspetti più significativi e più nuovi (per noi) delle questioni.» Personalmente, spesso mi trovo a dire, a parole, che l’errore è necessario ed è sano, ma vivo ancora con grande imbarazzo l’errore che commetto io davanti agli alunni: devo essere sempre preparata al meglio, proprio per evitare di commettere errori. Nel percorso di allenamento per preparare i ragazzi alla Disfida, spesso, tra colleghi, ci siamo trovati a riflettere su come non sia facile gestire questo percorso, proprio perché lavorare gomito a gomito con loro mette a nudo anche le nostre fragilità.

La responsabilità che abbiamo, come adulti, nell’apprendimento della matematica dei più piccoli è forse più grande di quanto pensiamo. La matematica è spesso associata all’ansia (ne ho parlato più volte anche in questa newsletter) e l’argomento viene ripreso anche da uno studio recente (pubblicato a marzo) dell’Università di Cambridge. Lo studio mostra «come i genitori e gli insegnanti influenzino le prestazioni e gli atteggiamenti verso la matematica degli studenti, senza neanche accorgersene». Eppure tutti possono imparare la matematica ad alti livelli, secondo quanto dice Jo Boaler, professore di “Mathematic Education” alla Stanford University: l’articolo «presenta alcune nuove scoperte che secondo lei dovrebbero cambiare il modo di insegnare matematica». Innanzi tutto, è sottolineato il fatto che il cervello si modifica nel tempo, a seconda degli stimoli a cui è sottoposto: «nessuno sa cosa uno studente sia in grado di imparare e le pratiche scolastiche che pongono limiti sul potenziale apprendimento degli studenti hanno bisogno di essere radicalmente ripensate». La Boaler tiene un corso dal titolo «Come imparare la matematica» e questo le ha permesso di cogliere la vulnerabilità degli studenti, che tendono velocemente a credere di non essere portati per le materie scientifiche. I ricercatori sanno che «il momento in cui il cervello cambia e cresce maggiormente è quando le persone si trovano a lavorare su contenuti impegnativi, commettendo errori, correggendoli, superandoli, commettendo ulteriori errori, sempre lavorando in aree altamente stimolanti». In conclusione, se «appiattiamo il nostro insegnamento su una sola dimensione», ovvero se proponiamo esercizi ripetitivi che non offrono una vera sfida, non favoriamo la creazione di connessioni neuronali. Il messaggio più bello è che «faticare è davvero importante per la crescita del nostro cervello». Non pare vogliano fare molta fatica coloro che chiedono aiuto su Instagram per il compito di matematica: ovviamente, è possibile farsi aiutare a pagamento e l’aiuto potrebbe arrivare anche durante il compito in classe, a patto di non farsi sorprendere con il cellulare.

Se invece lo studente è un alunno della primaria e le difficoltà sono quelle con le tabelline, potrebbe essere utile questo metodo per svolgere le moltiplicazioni con le dita, proposto da Bruno Jannamorelli.

Cosa hanno in comune Euclide, Einstein a dodici anni e il presidente americano James Garfield? Hanno tutti dimostrato in modo elegante il teorema di Pitagora. Questo simpatico filmato realizzato per TED-Ed, oltre a una breve storia del teorema di Pitagora, ci presenta alcune semplici dimostrazioni, scelte tra le oltre 350 disponibili. Come evidenziato dal video, le terne pitagoriche erano usate anche per rappresentare angoli retti: il problema proposto da Adam Atkinson su MaddMaths! ha proprio a che fare con gli angoli retti. La dimostrazione sembra giusta, ma...

«Nacque così, procedendo in disordine, MaddMaths! un bagaglio di matematica condivisa da cui tutti possono prendere qualcosa.» Con queste parole e con un racconto riguardante la valigia del matematico, Sandra Lucente celebra i 10 anni del sito MaddMaths!, stesso anniversario grazie al quale Nicola Ciccoli ha deciso di ricordare la prima volta in cui ha dato il suo contributo con un pezzo di cuore. Alberto Saracco ne approfitta per fare un’analisi della comunicazione matematica degli ultimi venticinque anni: «I matematici non sono più rinchiusi nelle loro torri d’avorio, ma sono costantemente a contatto con il pubblico e con gli studenti, dalle elementari alle superiori e cercano di comunicare un’idea della matematica più corrispondente al vero.» In questa celebrazioni non potevano mancare i Rudi Mathematici (chi li conosce sa che di compleanni se ne intendono...): quelli di MaddMaths!, a detta dei Rudi, hanno tirato su «su un ponte ad otto corsie che unisce matematica ricreativa e matematica seria, che prima – almeno in Italia – erano tenute insieme al più da un sentierino stretto stretto». Per chiudere il decennale, un articolo di Roberto Natalini, che ha riassunto tutti gli interessanti interventi realizzati per questa celebrazione.

Un articolo leggero, ma non per questo meno interessante, è quello dedicato alla x da Luisa Seguin: la x, quella che, secondo le vignette che popolano il web, dovrebbe imparare a risolversi i problemi da sola, la stessa che fa impazzire gli studenti di tutto il mondo e, immancabilmente, durante una verifica, ottiene un valore diverso per ogni alunno. Una breve storia dell’algebra e... ecco svelato il mistero: ora sappiamo perché è stata scelta la x per indicare l’incognita algebrica!

«Il 19 marzo l’Accademia norvegese di Scienze e Lettere ha annunciato il vincitore del Premio Abel 2019»: premio istituto in ricordo del giovane matematico norvegese Niels Henrik Abel per promuovere e rendere più prestigiosa la matematica, «dal 2003 viene attribuito annualmente a un matematico che si è distinto nel corso della sua carriera e consiste in una somma di denaro di poco più di 600 mila euro». Per la prima volta, il vincitore è una donna, Karen Keskulla Uhlenbeck, «per i suoi risultati pionieristici nelle equazioni alle derivate parziali e geometriche, nei sistemi integrabili e per il fondamentale impatto del suo lavoro sull’analisi, la geometria e la fisica matematica». Le teorie della Uhlenbeck hanno rivoluzionato la comprensione delle bolle, ovvero delle superfici minime.

Il 2 aprile si è svolta la simulazione della seconda prova dell’Esame di Stato: «La prova integra in modo equilibrato argomenti fondamentali di Matematica e di Fisica che di solito vengono trattati in modo approfondito prevalentemente al quinto anno.» Si è trattato di una prova impegnativa, non banale.

In conclusione, non dimentichiamo che aprile è il mese della consapevolezza matematica. Se avete letto la newsletter, avete fatto il primo passo verso una maggiore consapevolezza...

 

Buona matematica! Ci sentiamo tra TRE settimane!

Daniela