«Slowmath – Guida alla matematica non competitiva» è stato pubblicato nel 2015 dalla Casa Editrice Aracne. L’autore è Eugenio Biasin, docente di matematica alle scuole superiori, autore di numerosi articoli di didattica della matematica e del libro «Il prof sul lettino», pubblicato da Aracne nel 2010.
Già nell’introduzione l’autore dichiara che il suo obiettivo è quello di offrirci una visione originale della matematica, attraverso la «presentazione di idee matematiche belle, interessanti, di ampio respiro, interne alla disciplina o collegate ad altri aspetti della cultura». Con la prima di una lunga serie di citazioni, dà la parola a Imre Toth, matematico rumeno, che si dice indifferente da sempre «al lato sofisticato dei trucchi matematici. Quello che m’interessava era la struttura interna di questa complessa scienza».
Il libro è diviso in due parti: la prima parte, intitolata «Parole, immagini e protagonisti della matematica», offre un elenco di letture per cogliere la complessità e la bellezza della matematica. I cinque capitoli sono intitolati con lo stesso stile, ovvero quello di un aggettivo che precede l’oggetto del capitolo: così abbiamo «interessanti saggi», «piacevoli romanzi», «divertenti fumetti», «coinvolgenti pellicole» e «secolari congressi». Tra i saggi, raggruppati in biografie, problemi, argomenti e riflessioni, troviamo un elenco di una quarantina di testi, accompagnati da una breve descrizione e, a volte, da alcune citazioni. A questi fa seguito una trentina di romanzi, suddivisi tra ossessioni, vite, storia, filosofia, delitti, fantascienza ed enigmi, mentre il capitolo successivo è dedicato ai fumetti. L’elenco non è aggiornato, ma dà l’idea di un ambito in crescita, esattamente come il capitolo dedicato ai film. L’ultimo capitolo costituisce un collegamento tra le due parti: dopo una breve storia dei congressi internazionali, si parla delle medaglie Fields e dei premi che ad esse si sono aggiunti, come il premio Abel e il premio Gauss. Inevitabile, poi, parlare del Congresso di Seoul, avvenuto nel 2014, durante il quale è stata premiata Maryam Mirzakhani. Tra i numerosi vincitori della medaglia citati da Biasin, troviamo quello che, all’epoca della pubblicazione del libro, era l’unico premiato italiano, Enrico Bombieri, ma non manca una previsione (azzeccata!): «la situazione della ricerca scientifica nel nostro paese non è certo delle più rosee, ma di bravi matematici ne abbiamo eccome, molti dei quali attivi in università e centri di ricerca di primo piano nel mondo. Uno fra tutti Alessio Figalli…», vincitore della Medaglia Fields nel 2018.
La seconda parte è intitolata «Forme, numeri e idee» e offre una serie di percorsi, tra quelli ritenuti più significativi da Biasin, che si aprono con «La sorprendente relazione di Eulero». Dopo una riflessione sulla necessità dell’insegnamento della geometria, l’autore cita questo teorema, di natura topologica, e, dopo la dimostrazione, presenta tre interessanti conseguenze. «La misteriosa quarta dimensione» è oggetto del secondo capitolo, che si apre con una citazione tratta dal celebre «Flatlandia», e, dopo le rappresentazioni dell’ipercubo, approda ai politopi quadridimensionali. La conclusione del capitolo è dedicata a Mister Politopo, Donald Coxeter, matematico che ha contribuito allo sviluppo della geometria quadridimensionale. Da lui a Escher, il passo è breve, come scopriamo nel terzo capitolo, intitolato «Le meravigliose Coxeter-azioni di Escher»: le xilografie «Limite del cerchio» sono nate da una rappresentazione di Coxeter. Con «Gli intriganti segreti della moderna crittografia», l’autore non ha paura di darci definizioni rigorose e di guidarci nelle dimostrazioni, mentre un esempio ben orchestrato ci permette di capire il funzionamento dell’algoritmo RSA. L’ultimo passo è quello più coraggioso, da un punto di vista concettuale, visto che è dedicato a «L’inattesa incompletezza della matematica»: i celebri teoremi di Gödel guidano il percorso e ci riportano alle radici filosofiche della matematica.
La prima parte costituisce un’introduzione alla seconda, nella quale Biasin ci accompagna in un percorso studiato ad arte. Purtroppo, molti tra i numerosi suggerimenti di lettura della prima parte sono poco accessibili, se non grazie alle biblioteche: difficilmente i testi divulgativi di matematica diventano dei best seller («Il teorema del pappagallo» è più un’eccezione che una regola) e, se non li si acquista al momento della pubblicazione, diventa difficile reperirli quando è passato un po’ di tempo. Anche il testo di Biasin ha subito la stessa sorte e mi è stato possibile leggerlo solo grazie alla rete bibliotecaria. Personalmente, lo ritengo un ottimo approfondimento e, per gli insegnanti, l’occasione di accedere a un’esperienza trentennale, quella dell’autore: la sua scelta di condividere con il lettore una cultura costruita nel tempo non può che lasciarci meravigliati di fronte alla sua passione per la matematica.
«Il fattore coniglio» è un romanzo pubblicato a marzo 2023 dalla casa editrice Mondadori per la collana Strade Blu. Primo romanzo di una trilogia, dovrebbe essere seguito da «Il Paradosso dell’alce», non ancora pubblicato in Italia, e «La teoria del castoro», che verrà pubblicata in Finlandia a ottobre del 2023. L’autore è Antti Tuomainen, copywriter pluripremiato, che nel 2007 ha fatto il suo debutto letterario, ottenendo grandi soddisfazioni e premi anche come scrittore.
Il protagonista della trilogia è Henric Pekka Olavi Koskinen, un attuario quarantaduenne, convinto di poter trovare qualsiasi risposta nella matematica: «Fin da bambino avevo capito che la chiave era la matematica. La gente tradiva, i numeri no. Ero circondato dal caos, ma i numeri rappresentavano l’ordine.» La sua vita così ordinata e prevedibile, basata su un equilibrio che pare cristallizzato – «Vivo per conto mio, da solo. Considerate tutte le variabili stocastiche, è di gran lunga l’opzione più sensata» – viene sconvolta. Dapprima, dopo anni di lavoro come attuario presso un’assicurazione, impegnato a valutare i rischi attraverso il calcolo delle probabilità, si dimette, «perché non sopportavo di vedere il mio posto di lavoro trasformato in un parco giochi». Poi, all’inaspettata morte del fratello, riceve in eredità proprio un parco divertimenti, o, come precisa lui stesso più volte, un parco avventura. Purtroppo, riceve in eredità anche un grande debito, dovuto al vizio del gioco del fratello, e questo, attraverso una serie di imprevisti, sconvolge la vita di Henric fino a farlo dubitare di riuscire a risolvere i suoi problemi con la matematica, come ha sempre fatto.
Il libro è davvero interessante perché offre un modo esilarante di considerare la matematica, attualizzandola e mostrandone l’efficacia nella quotidianità. Oltre all’originalità del protagonista, c’è la suspence che ci fa sentire la necessità di andare oltre, dalla prima all’ultima pagina, nella speranza di riuscire a trovare una soluzione che possa in qualche modo portare un vantaggio al protagonista, «un attuario […] aduso alla logica e alla prevedibilità; in una parola, a ragionare». È proprio questo suo modo di interpretare la realtà che a un certo punto presenta un limite: è come se la matematica non fosse adatta per interpretare il mondo che ci circonda, perché la maggior parte delle persone non agisce in base alla logica e sembra che l’arma di difesa di Henric sia ora inefficace.
Nel racconto non mancano riflessioni sulla vita, date dalle citazioni di Schopenhauer (che è anche il nome del gatto del protagonista) che nel suo saggio “Della vanità e dei dolori della vita” parla dell’esistenza umana come di un debito per il quale «la richiesta di pagamento assume la forma dei bisogni pressanti, dei desideri tormentosi e delle infinite miserie che l’esistenza stessa ha creato». Ad una vita che avviene nel peggiore dei mondi possibili, si contrappone l’interpretazione di Leibniz, che parla di «migliore dei mondi possibili», ma per Henric è più attendibile il filosofo, perché, dati i problemi che si trova ad affrontare, «trovare una soluzione a questi problemi è una questione di vita o di morte, letteralmente». La copertina del libro, invitandoci alla lettura con conigli dispersi tra formule matematiche, ci ingolosisce parlando di «un esilarante noir pieno di amore, morte e matematica attuariale» ed è l’amore per Laura, la direttrice del parco, a sovvertire l’ordine più che mai, visto che le parole di Henric non sono più «il risultato né di un pensiero critico né di alcun processo computazionale» come invece avveniva in precedenza.
La successione degli eventi è così assurdamente improbabile da rendere impensabile una soluzione matematica, forse proprio perché il protagonista appare così rigido: è solo apparenza, perché la matematica regala una flessibilità tale da permettere ad Henric di cavarsela.
«La matematica dell’incertezza» è stato pubblicato nel 2016 dalla casa editrice Il Mulino nella collana Intersezioni. L’autore è Marco Li Calzi, docente presso l’Università Ca’ Foscari di Venezia e direttore del Collegio Internazionale, appassionato di teoria delle decisioni e teoria dei giochi.
Abitualmente, associamo la matematica alla certezza, tanto che di un’affermazione di cui non si può dubitare diciamo che “è matematicamente certa”, perciò, già dal titolo, è chiaro che non si potrà che parlare di probabilità, e “Probabilità” è la parola con cui si apre il preludio. «Spero di convincerti che la vita quotidiana ti espone a più rischi e a più incertezza di quanto credi», scrive Li Calzi, dichiarando fin da subito il proprio obiettivo. Se analizziamo la nostra quotidianità, possiamo constatare che le decisioni vengono prese in condizioni di incertezza, valutando i rischi o le probabilità, in molti ambiti della nostra vita, dalla medicina alle assicurazioni. Che ci piaccia o no, siamo immersi nella matematica ed essa «sa trovare (e mettere) un po’ di ordine quando il caso sembra divertirsi a scombinare tutto».
Siccome l’incertezza ha molte facce, Marco Li Calzi ha dedicato un capitolo ad ogni faccia del classico dado cubico, raccontando sei storie che possono essere lette in ordine o, appunto, lanciando un dado e lasciandosi guidare dal caso nella scelta. Alea, opinione, ipotesi, decisione, premio e rischio sono le parole-chiave dei sei capitoli. Si comincia con «Correre l’alea», che racconta i primi passi del calcolo delle probabilità, a partire dal famoso “Alea iacta est” di Cesare, fino alla celebre partita incompiuta discussa da Pascal e Fermat. Nel capitolo «Formulare un’opinione» si contrappongono la conoscenza – che è certa, perché possiamo distinguere una proposizione vera da una falsa – e la probabilità, per la quale dobbiamo formarci un’opinione, soppesando i pro e i contro. «Si può colorare la conoscenza certa in bianco e nero, ma per la conoscenza probabile servono molte sfumature di grigio», come ci ricordano pubblici ministeri, scienziati e medici. Nel terzo capitolo, «Azzardare un’ipotesi», Li Calzi descrive il «congegno aleatorio del tipo che i probabilisti amano chiamare urna», abituando il lettore al linguaggio probabilistico a suon di esempi realistici e reali, e di metafore significative e semplici da cogliere, fino a spiegare il paradosso di Simpson e il significato della distribuzione gaussiana. In un crescendo di difficoltà, il quarto capitolo spiega come «prendere una decisione»: partendo dalla scelta se portare con noi l’ombrello, l’autore arriva a distinguere tra decisioni meditate e calcolate, che richiedono tempo, e decisioni istintive e spesso inconsapevoli, che hanno il pregio dell’immediatezza, paragonandole alle scelte del dottor Jekyll e del signor Hyde e obbligando il lettore a prendere delle decisioni per mettersi alla prova. Il capitolo «Valutare un premio» permette di immergersi nel linguaggio delle assicurazioni, i contratti aleatori più comuni (e più noti), ma la conclusione, insospettabile, ci porta ad esplorare il moto browniano, dopo aver seguito lo sviluppo delle scienze attuariali. Dalla nascita delle assicurazioni, con la necessità di tutelare in qualche modo i commerci marittimi, nel sesto capitolo si arriva ad «affrontare il rischio», attraverso la matematica che contribuisce «a definire la natura e a calcolare la dimensione di alcuni rischi», a partire dal lavoro di de Moivre nel Settecento.
Le postille finali sono sei importanti citazioni che richiamano le sei parole chiave che hanno guidato la narrazione e, a dimostrazione del fatto che l’incertezza investe davvero ogni settore della nostra vita, gli autori sono un biologo, un giornalista, uno scrittore, un filosofo, un astronauta e un consulente aziendale. La chiusura è originale: le citazioni avrebbero potuto essere messe in apertura di capitolo, come un’introduzione dell’argomento, mentre poste alla fine e tutte insieme acquisiscono un significato diverso, come un riassunto e un’ulteriore evidenza dell’onnipresenza dell’incertezza.
La narrazione è arricchita da numerose citazioni letterarie (Trilussa, Shakespeare, Kierkegaard, Borges, Omero, Montale…), tabelle, schemi, disegni e grafici regalano grande chiarezza, gli aneddoti alleggeriscono il percorso divertendo, e i numerosi esempi offrono ai docenti interessati un ricco campionario al quale attingere durante le lezioni sull’argomento.
La lettura è consigliata a tutti, anche solo per diventare maggiormente consapevoli dell’incertezza che permea le nostre vite e, magari, per acquisire qualche strumento in più per gestirla.
L’animazione combatte con la matematica
Animation versus Math è uno degli ultimi video di Alan Becker, divenuto famoso nel 2006 per il video Animator vs Animation, di cui sono state pubblicate diverse versioni. Il filmato, particolarmente simpatico, doveva essere condiviso già nelle scorse newsletter, visto che è stato pubblicato il 24 giugno, ma poi tra una cosa e l’altra me ne sono dimenticata. Il protagonista è un piccolo stickman arancio, ovvero un omino stilizzato, che dapprima scopre la matematica, poi combatte contro di essa, fino a diventarne amico. La matematica è rappresenta da e elevato all’unità immaginaria moltiplicata per pi greco, che compare abbastanza presto, subito dopo l’introduzione dell’addizione e della sottrazione, e grazie all’identità di Eulero. Poi scompare, per consentire la presentazione della moltiplicazione, della divisione, della divisione per zero, delle potenze e delle loro proprietà con le quali il protagonista si trova a giocare, fino ad arrivare alle radici quadrate, ai numeri irrazionali, e, di nuovo, ai numeri immaginari. Ed è qui che compare di nuovo la potenza, che si trasforma in una serie di potenze, con infinite munizioni (i suoi termini) per combattere contro l’omino. Se non l’avete ancora visto, potete scegliere se guardare il filmato originale, o se seguirlo con le interruzioni e il simpatico commento di Tom Crawford, matematico dell’Università di Oxford, che dal suo canale Tom rocks maths ci presenta questa animazione.
Fisica e matematica tra curiosità e divertimento
Federico Benuzzi è particolarmente attivo in quest’ultimo periodo, avendo pubblicato alcuni video molto interessanti: con Uno “strano” fenomeno: 2 palle… ci mostra un pallone da basket e una pallina più piccola che, cadendo insieme a terra, sono protagonisti di un effetto curioso, che porta la pallina più piccola a schizzare velocissima verso l’alto, quando la palla più grande tocca il pavimento. Il fenomeno è particolarmente interessante ed è ben spiegato, attraverso un video di una decina di minuti, nel quale Federico ci guida nello studio degli urti. Il video può interessare i ragazzi eventualmente impegnati con lo studio per il recupero del debito, ma può essere anche un modo un po’ originale per introdurre il tema degli urti quando capita di trattarlo in classe. Magia… una “pillola” di fisica in bagno è un video registrato proprio… in bagno, mentre Federico si sta asciugando i capelli dopo la doccia: partendo dalla legge di Bernoulli, tutto viene spiegato con dovizia di particolari ed esempi. Di sicuro impatto è l’ultimo video, E se 0/0 facesse 1?, che, attraverso una dimostrazione per assurdo, ci mostra come 0 diviso per sé stesso non possa dare 1: si tratta di una spiegazione originale, che permette di vedere in azione la dimostrazione per assurdo.
Preoccupati delle tue decisioni…
Il canale YouTube Mind your decisions è sempre fonte di giochi, problemi, riflessioni. Cominciamo con A simple riddle is confusing the Internet, che ci mostra come per risolvere problemi matematici sia necessario avere anche buone competenze linguistiche. Si domanda quale sia l’orario più vicino alla 00.00 e, al di là del problema delle ore misurate con il sistema anglosassone, cioè con a.m. e p.m., bisogna superare un pregiudizio che potrebbe inficiare la nostra risposta. Il problema, infatti, non consiste nel determinare l’orario che ci permette di avvicinarci prima alle 00.00… Il secondo video è Only 3 percent solved this logic puzzle e propone un quesito di logica che potrebbe interessare quegli studenti che si trovano ad affrontare i test di ammissione all’università: si può risolvere con un semplice diagramma di Eulero-Venn o si può seguire il percorso proposto da Presh Talwalkar. The moving pole problem, invece, è il classico problema dalla semplice formulazione, che sembra richiedere solamente la matematica elementare, ma che nasconde di fatto un problema di massimo e minimo. L’ultimo problema è uno short intitolato Think outside the box, ovvero pensa fuori dagli schemi: la soluzione scolastica è abbastanza lenta, ma ci porta comunque alla soluzione giusta. La soluzione fuori dagli schemi, invece, si basa su un disegno accurato, che permette di ottenere il risultato con più semplicità. Non è un caso che il gioco occupi tanta parte di questa newsletter, visto che è stato annunciato il tema dell’International day of mathematics: il gioco! Il tema viene scelto per stimolare la creatività e mettere in luce le connessioni tra la matematica e tutti gli altri campi, concetti, idee. Nel 2024, quindi, verranno celebrati i giochi matematici, gli enigmi e altre attività divertenti e di intrattenimento, per giocare con la matematica, esplorando, sperimentando e scoprendone nuovi aspetti.
Loghi… matematici
Il nuovo logo di Twitter è una gigantesca X scritta con un carattere speciale. Presh Talwalkar ci racconta una piccola curiosità che ha a che fare con questo logo: scrivere le maiuscole mettendo in evidenza un ramo della lettera con un doppio tratto ha un particolare significato per i matematici. Oltre a nominare gli spazi di Banach, Presh Talwalkar ci spiega perché questo particolare carattere incontri il favore dei matematici e lo definisce come “blackboard bold”, ovvero grassetto da lavagna: è, in effetti, un modo estremamente pratico di rappresentare il grassetto quando si scrive alla lavagna. Da qui agli insiemi numerici il passo è breve ed ecco quindi una rappresentazione di Eulero-Venn per aiutare la descrizione. Si tratta di una formalità, certo, ma spesso anche gli aspetti più formali della matematica possono nascondere curiosità interessanti.
Suggerimenti di lettura
Il mistero della discesa infinita è il secondo romanzo di Flavio Ubaldini, seguito de Il mistero del suono senza numero. È una lettura davvero interessante, adatta a tutti, che mescola filosofia e matematica, approfondendo in particolare i paradossi di Zenone. Matematica dietro le quinte è una nuova edizione di un testo del 2005, un grande classico sempre attuale, che spiega la matematica nascosta nella vita quotidiana. La lettura è alleggerita dalle simpatiche illustrazioni che contribuiscono a spiegare i concetti più difficili e, per questo motivo, è un libro consigliato a tutti: grazie ai brevi paragrafi e agli argomenti leggeri, si presta anche a una lettura sotto l’ombrellone. E tutto sembrò falso e sembrò vero è opera di Elena Tosato, che ci offre una serie di 30 (+ 2) sonetti su altrettanti paradossi. I paradossi sono porte che, generando una crisi, permettono di accedere a un nuovo tipo di sapere e, presentati simpaticamente attraverso i sonetti, riescono a lasciare un segno ancora più indelebile nella nostra memoria. Con l’aiuto, poi, della breve, ma chiarissima, spiegazione di Elena Tosato, diventa ancora più facile incuriosirsi e appassionarsi.
Attualità, curiosità e nuovi stimoli
Alla ricerca di nuovi contenuti per i prossimi laboratori di BergamoScienza, che dedicheremo alla topologia, mi sono imbattuta nella mappa della scienza, una mappa topologica sulla scienza moderna, realizzata nel 2010 da Crispian Jago e condivisa sul suo blog. È una mappa davvero ben fatta: ci sono più percorsi, che corrispondono alle diverse branche della scienza, e i nodi, a volte comuni, sono gli scienziati. Tra i vari contenuti proposti troviamo anche il diagramma di flusso della cospirazione che loro non vogliono si conosca: da qui è facile collegarsi alla lettera aperta ai media italiani, scritta dagli scienziati italiani, con la quale si invitano i giornalisti a parlare con chiarezza della crisi climatica per non condannare «le persone al senso di impotenza». È responsabilità di tutti gli scienziati «avvertire chiaramente di ogni minaccia della salute pubblica» e gli effetti della crisi climatica, dopo tutto, sono sotto gli occhi di tutti, con ondate di calore, alluvioni, grandinate, siccità prolungate e incendi. Ognuno di noi può dare il proprio contributo al miglioramento della situazione: la matematica ci insegna, attraverso il postulato di Eudosso-Archimede, che anche per una quantità A più piccola di una quantità B, esiste un multiplo intero che, moltiplicato per A, dia un valore maggiore di B, ovvero che, per quanto piccolo, il contributo di ciascuno di noi, se moltiplicato per un intero sufficientemente grande (cioè per un grande numero di persone), può sempre cambiare la situazione. La dimostrazione è data dai passeggeri della metro di Parigi, che semplicemente passando ai tornelli possono generare energia pulita.
Il canale Mathematical Visual Proofs ci offre una dimostrazione in 3D della formula per la somma dei quadrati dei numeri dispari: secondo le finalità del canale, si tratta di una dimostrazione senza parole, estremamente chiara, utile per memorizzare la formula.
Per quanti fossero impegnati con il proprio aggiornamento durante queste settimane di vacanza, può essere utile la riflessione sulla valutazione proposta dal secondo numero dell’anno della rivista Archimede.
Buona matematica! Ci sentiamo tra TRE settimane!
Daniela
«E tutto sembrò falso e sembrò vero» è stato pubblicato a giugno 2022 da Scienza Express e l’autrice è Elena Tosato, mente eclettica dai numerosi interessi, tra i quali spiccano la fisica e la poesia. Elena Tosato ha cominciato a scrivere giovanissima, all’indomani dell’esame di fisica 1 all’università – come dichiarato in una recente intervista – quando ha scritto il centounesimo canto della Divina Commedia, immaginando l’entrata di Dante nel mondo della fisica, mentre esplora il secondo principio della termodinamica.
L’idea di scrivere sonetti sui paradossi è stata ispirata dalla collana mensile pubblicata da Le Scienze nel 2021: ai venti paradossi proposti dalla rivista, Elena Tosato ne ha aggiunti altri dieci, e un altro paio, per introdurre e chiudere la raccolta. Come dichiarato nell’introduzione, «affrontare un paradosso ci fa riflettere sui concetti di verità e di consistenza logica, e ce ne fa talvolta ampliare gli orizzonti», e il sonetto di apertura ci dice: «già qui si troverà – o lo si spera – in che si dica il vero, in che si menta, e cosa mai s’impari, in altra forma».
I trenta paradossi sono accompagnati da una spiegazione breve, ma estremamente chiara: dalla fisica, con la teoria della relatività e la meccanica quantistica, alla probabilità, dalla teologia alla democrazia, dalla teoria dei giochi alla logica, dalla cosmologia alla teoria degli insiemi, abbiamo modo di esplorare vie sconosciute, e di scoprire che se aumentiamo il numero delle strade non necessariamente risolviamo il problema del traffico, che un solido dalla superficie infinita può racchiudere un volume finito, che non è detto che la democrazia sia garantita, e che se un giorno riusciremo a compiere viaggi nel tempo, dovremo avere a cuore la salute dei nostri nonni. Al tempo stesso, nel corso della lettura ritroviamo anche i paradossi più classici, come la gara tra Achille e la tartaruga, raffigurata nell’immagine di copertina, e la rassegna è aperta e chiusa da due grandi classici, come il paradosso del mentitore e il paradosso di Fermi. «Qualche ombra / di cose nuove e vecchie ridipinte / ci sembra adesso farci compagnia», ci dice Elena Tosato nell’ultima terzina del sonetto che chiude la raccolta.
Il libro può essere una fonte di ispirazione e ogni sonetto può arricchire le lezioni scolastiche, permettendo un’introduzione originale dei nuovi argomenti: il linguaggio della poesia e, in particolare, la struttura del sonetto, obbligano l’autrice a una sintesi estrema e a una scelta accurata delle parole, arricchendo di senso il racconto dei paradossi, che vengono poi affrontati con maggiore rigore scientifico nella breve spiegazione. Elena Tosato non ha paura di mostrarci le formule e i calcoli dove servono, ma il tutto all’insegna della semplicità e con grande chiarezza.
Parecchio altro si può ritrovare sul blog dell’autrice, o seguendola sui social, dove spesso condivide poesie e riflessioni.
«Matematica dietro le quinte» è stato pubblicato a giugno 2023 da Edizioni Dedalo, per la collana Senzatempo: è una nuova edizione di un testo del 2005, «Coppie, numeri e frattali. Altra matematica nascosta nella vita quotidiana», ora arricchito dalla presentazione di Elena Ioli. Gli autori sono Rob Eastaway e Jeremy Wyndham: il primo è un ideatore di giochi matematici per il «Sunday Times» e «New Scientist», che il secondo risolveva per passare il tempo. Eastaway ha ricevuto la medaglia Zeeman nel 2017 per la divulgazione matematica e in questa collana ha pubblicato anche Quanti calzini fanno un paio?, Wyndham è stato un regista indipendente e uno studioso di fisica. I due hanno scritto anche «Probabilità, numeri e code. La matematica nascosta nella vita quotidiana», attualmente di difficile reperibilità, perciò speriamo che Dedalo decida di procedere con una nuova edizione anche in questo caso.
Il testo è scorrevole e, pensato per i ragazzi delle superiori, è scritto con un linguaggio molto semplice e arricchito dalle illustrazioni di Barbara Shore, che non solo rendono più leggera la lettura, ma aiutano a spiegare meglio i concetti presentati. Ritroviamo, inoltre, alcuni box esplicativi che permettono di fare dei piccoli approfondimenti.
I sedici capitoli spaziano su tutta la matematica e sul mondo che ci circonda: si comincia con un esempio di come la matematica si nasconda tra le pieghe della nostra vita, visto che l’aritmetica modulare si nasconde nei nomi dei giorni della settimana, ma si esprime anche nel calendario lunare e nei dodici mesi. Troviamo trucchi e stratagemmi per spillare denaro, ma anche le indicazioni per scoprire le frodi e i raggiri, senza dimenticare che, purtroppo, «nessun sistema di controllo è infallibile». Nel terzo capitolo scopriamo come dar vita a un successo musicale, che poi viene straziato al karaoke, come ci spiega il quattordicesimo capitolo, dove gli autori citano Pitagora e Fourier, spaziando tra rapporti e funzioni goniometriche. E mentre impariamo a impacchettare efficientemente le cose e a trovare un posto per l’ultima valigia, se dobbiamo servirci di un taxi possiamo calcolarne la tariffa, mentre scopriamo la geometria del taxi e la probabilità di avere due compleanni coincidenti in un gruppo di persone. La strategia insita nella matematica può aiutarci con i quiz televisivi del quinto capitolo, ma anche a scegliere l’anima gemella, con un undicesimo capitolo dove fa capolino la probabilità. Il nono capitolo, dedicato ai meccanismi della diffusione di un’epidemia, parla di virus informatici, di infodemia e di modelli matematici, mentre nel sesto gli autori ci raccontano che anche gli ascensori hanno una logica, spesso in contrasto con l’irrazionalità degli utenti. La bellezza dei frattali mostra la sua utilità con internet e la borsa, ma sconfina nel caos, destabilizzandoci con previsioni del tempo non sempre esatte. Al tredicesimo capitolo fa capolino anche lo sport, dove la matematica aiuta a creare una maggiore spettacolarizzazione, influenzando i regolamenti o illudendoci, con un’errata applicazione della proprietà transitiva, di riuscire a prevedere l’esito di un incontro. Con simpatia e leggerezza, gli autori riescono infine a parlare dell’arte della dimostrazione, e a concludere il percorso con le falsità inventate dai manipolatori dell’opinione pubblica, che possiamo smascherare grazie alla matematica.
Con leggerezza e semplicità, gli autori portano allo scoperto la matematica che si nasconde tra le pieghe della nostra quotidianità, mostrandoci come le formule siano una comodità, quando ci permettono di effettuare calcoli veloci, applicandole persino in ambiti diversi da quelli in cui sono nate. La matematica coglie la struttura di fondo e collega ambiti apparentemente lontani, grazie alla sua versatilità e alla sua flessibilità. Il libro è davvero consigliato a tutti, in particolare ai non amanti della matematica, perché possano perdersi tra queste pagine, imparare che esiste una matematica diversa da quella studiata a scuola, appassionarsi.
«Il mistero della discesa infinita» è stato pubblicato a novembre 2022 da Scienza Express ed è stato scritto da Flavio Ubaldini, che è autore anche de «Il mistero del suono senza numero». I due libri hanno molte similarità e sono, da un certo punto di vista, l’uno la continuazione dell’altro. In questo secondo testo, c’è un legame ancora più stretto tra filosofia e matematica, in un compenetrarsi continuo tra le due discipline, che ai tempi del protagonista Zenone erano praticamente indistinguibili.
Zenone si presenta come un bambino vivace, non estraneo alle marachelle, anche se serio: a dieci anni è molto affezionato al nonno, che lo porta ad avvicinarsi alla scuola di Parmenide, del quale è inizialmente il braccio destro, fino a diventarne il successore, approfondendo e ampliandone il pensiero. Il racconto scorre piacevolmente, coinvolgendo il lettore e regalando un po’ di suspence, dipanandosi da un capitolo all’altro con un buon ritmo (considerata la passione di Flavio Ubaldini per la musica, non poteva essere diversamente!). L’utilizzo dei termini del tempo ci permette di immergerci realmente nell’atmosfera, così troviamo Zenone che sorseggia del ciceone, mentre indossa il chitone, dopo essersi spogliato di imatio e petaso, per mettersi comodo. Non si tratta solo di un arricchimento lessicale: è la dimostrazione del lavoro di approfondimento svolto da Flavio Ubaldini, che, come ha dichiarato in un’intervista, si è recato anche sul posto per poter ambientare al meglio il proprio romanzo. Lo studio speso per costruire la storia è evidenziato anche dall’appendice bibliografica che troviamo al termine del romanzo, ricca di spunti per approfondire. Tra i testi citati, ritroviamo anche il Parmenide di Platone, nel quale si parla dell’incontro tra Parmenide, Zenone e Socrate, raccontato nel romanzo. Al di là della fondatezza storica di alcuni eventi (si parla di un’epoca lontana in cui la narrazione si ammanta di leggenda), tutto si basa sulle fonti dell’epoca anche se, come ricorda l’autore stesso nell’elenco dei personaggi nelle prime pagine del libro, per quanto si tratti di personaggi storici, essi sono stati «trasfigurati dallo sguardo del narratore».
Il testo è consigliato sia agli appassionati di matematica che agli appassionati di filosofia, anzi, per molti aspetti potrebbe essere un buon modo per affrontare lo studio dei presocratici in modo più leggero, permettendo di avvicinarsi ai personaggi da un altro punto di vista.
La vicenda ci regala un finale inaspettato, sorprendente!
La chiusura dell’anno scolastico cede il passo alla riflessione: ogni insegnante mette in discussione il proprio operato, alla ricerca di spunti per cambiare, migliorare e crescere. Se si aggiunge poi l’esperienza come commissario esterno all’esame di Stato, la riflessione è accompagnata dal confronto con nuovi colleghi, stimolante soprattutto se da un liceo scientifico si passa a un liceo linguistico, dove la matematica è un po’ la Cenerentola. Per l’esame orale, la commissione ha predisposto un materiale che, come stabilito dall’ordinanza, «è finalizzato a favorire la trattazione dei nodi concettuali caratterizzanti le diverse discipline e del loro rapporto interdisciplinare». Il candidato è stato, quindi, invitato a riflettere sul documento proposto e a fare un discorso organico, coinvolgendo le singole discipline. Quelli che seguono sono i collegamenti che avrei fatto io. Consapevole che non si potevano pretendere da ragazzi che, nel corso dell’ultimo anno, si erano concentrati unicamente sullo studio di funzione, ho provato a volte a suggerirli, anche solo per far nascere una riflessione diversa.
Matematica e… letteratura italiana
La commissione ha predisposto un brano del “Fanciullino” di Pascoli: la tematica parla di «antica serena maraviglia» e proprio sulla meraviglia ho voluto concentrarmi, citando Elisabetta Strickland, professoressa di algebra all’Università di Roma Tor Vergata: «La matematica è una meraviglia estetica e dà grandi soddisfazioni». Il candidato in questione ha confermato il senso di soddisfazione che nasce dai buoni risultati in matematica, e ha parlato della propria passione per la disciplina. Quando il documento riportava la poesia di Ungaretti “San Martino del Carso”, a me è venuto in mente Mauro Picone, come esempio del lavoro dei matematici durante la grande guerra, con le tavole di tiro, l’ufficio di studi balistici e la calcolatrice Brunsviga. L’anno scorso, proprio per offrire l’occasione di fare questo genere di collegamenti, avevo fatto alcune ore di lezione in quinta sulla scienza in guerra.
Matematica e… letteratura inglese
Ho trovato un articolo di Carlo Toffalori sull’ultimo numero di Prisma, riguardante il romanzo Night and Day di Virginia Woolf: la protagonista, Katharine Hilbery (bellissimo il richiamo a Hilbert), è un’appassionata di matematica impegnata nella stesura della biografia del nonno. Nella chiusura del terzo capitolo, la matematica, con la sua «esattezza» e l’«impersonalità stellare delle cifre», viene contrapposta alla letteratura, che è «confusione», «agitazione» e «vaghezza». In particolare, ho sottolineato questa frase: «avrebbe preferito confessare i suoi più arditi sogni di uragani e praterie piuttosto di svelare che, da sola nella sua stanza al piano di sopra, si alzava presto alla mattina o rimaneva alzata sino a tardi di notte per… fare matematica.»
Matematica e… diritto
Il liceo linguistico nel quale sono stata impegnata come commissario aveva l’indirizzo giuridico-economico e quindi i ragazzi hanno studiato anche diritto ed economia. Nel momento in cui al candidato è stato fornito come documento il primo articolo della Costituzione, l’ho invitato a riflettere su una frase di Chiara Valerio, autrice di La matematica è politica, che è stata citata sul Sole 24 ore: «La matematica è una disciplina che favorisce la diffusione della democrazia» perché «studiare matematica significa introiettare l’idea che le regole esistono». Il candidato ha compreso la necessità, per i nostri politici, di conoscere la matematica, ma non ha saputo identificare nella matematica quello strumento che ti permette di dare una lettura diversa della realtà. Io non ho potuto che concludere il discorso citando il celebre «Non entri chi non è geometra» dell’Accademia di Platone, ma è programma di terza, ed è un peccato, perché altrimenti alcuni collegamenti sarebbero nati spontaneamente. Basti pensare al libro di Flavio Ubaldini Il mistero del suono senza numero, un simpatico romanzo che parla della scoperta degli irrazionali e della scuola pitagorica, mescolando la matematica con la filosofia, che d’altra parte sono cresciute insieme, e accompagnando il tutto con un po’ di musica, in tipico stile pitagorico.
Matematica e… storia
I collegamenti con la matematica a volte sono stati resi possibili grazie ai documenti forniti ai ragazzi: se si sceglie un grafico, la sua lettura mette in gioco delle competenze matematiche (che sono poi le competenze del cittadino). Il primo documento era stato pensato come supporto a un’immagine della seconda guerra mondiale, ma la commissione ha deciso di fornirlo da solo: è il grafico sui morti civili e militari, proposto dall’Istituto per gli Studi di Politica Internazionale. I due parametri, il colore e la grandezza dei cerchi colorati, permettono di cogliere subito il numero di morti per nazione e se si sia trattato di una maggioranza di morti civili o militari. Il secondo documento non è stato proposto da me: si tratta di un’infografica presente in un libro di storia, tratta dal Philip’s Atlas of World History, e si è prestata ad un’interpretazione inaspettata (inaspettata, probabilmente, anche per chi il grafico l’ha realizzato). Il documento riguarda gli effetti della depressione in Europa e presenta in modo fuorviante i dati relativi all’aumento della disoccupazione tra il 1928 e il 1932. Ho chiesto al candidato di riflettere sull’aumento della disoccupazione nel quadriennio, indicandomi il paese che ha subito un aumento maggiore (piccolo aiuto: non è la Germania) e poi ho fornito le cifre del denominatore, ovvero della popolazione nei vari stati nel periodo precedente la guerra. Si tratta di domande che, come cittadini, dovremmo imparare a porci, ogni volta che leggiamo un grafico o un’infografica.
Pregiudizi e stereotipi
A chi insegna matematica capita spesso di scontrarsi con i pregiudizi e gli stereotipi dei quali è vittima questa disciplina, ma durante i lavori della commissione ne ho fatto una scorpacciata: appena ho incontrato i commissari interni, è stato subito messo in chiaro che «i ragazzi non sono molto bravi in matematica», come a implorare la mia benevolenza. Mi sono sentita un po’ l’orco cattivo delle favole (un po’ Cenerentola un po’ orco… questo esame è stato una favola!). Non ho ancora capito se erano i ragazzi ad avere paura della matematica (o di me?) o i colleghi. Il secondo stereotipo… be’, è quello che ogni laureato in matematica sperimenta quando va a mangiare la pizza con gli amici: così come al ristorante l’onere del calcolo delle quote spetta al matematico di turno, così durante gli esami di stato al commissario di matematica spetta la somma nelle griglie di valutazione. E così sono stata usata come una calcolatrice (cosa che non sono… speriamo quindi di non aver commesso errori!). In fondo, ci nutriamo tutti di stereotipi, un po’ come quelli citati da Vito Tartamella nel libro Il pollo di Marconi: pare che anche gli scienziati siano capaci di ridere (e di far ridere) e non siano così seri come si pensa. Meno male! Grazie alla passione di Tartamella per l’argomento, ho potuto intrattenermi nei momenti morti, facendo due risate.
Collegamenti “impropri”
L’idea di parlare dei collegamenti dell’orale dell’Esame di Stato mi è venuta innanzitutto dai social: l’Esame di Stato ha invaso i social e ogni volta che facevo una ricerca su Google per scovare possibili collegamenti, venivo indirizzata verso i siti più frequentati dagli studenti. Di fatto, mentre i candidati facevano la loro prova, ho avuto la tentazione di raccontare soprattutto i collegamenti improbabili che ho sentito durante gli esami. Ne riporto qui alcuni, giusto per concludere con una risata…
«Dopo aver parlato del dominio nazista, parlerei del dominio di una funzione…»
«Il tempo è estremamente importante nella nostra esistenza. Parlerei, quindi, a tal proposito, del campo di esistenza di una funzione…»
«“Ma nel cuore nessuna croce manca”. A proposito di croci, parlerei del grafico di una funzione…»
Forse per chi la insegna, è più facile vedere la matematica ovunque, come ci dimostra Federico Benuzzi, che non riesce a giocare con la sua bambina di due anni senza parlare di matematica!
Buona matematica! Ci sentiamo tra TRE settimane!
Daniela
PS: immagine da matheasily che propone puzzle di addizioni
«Il pollo di Marconi e altri 110 scherzi scientifici» è stato pubblicato ad aprile 2022 dalla casa editrice Dedalo nella collana ScienzaFACILE. L’autore è Vito Tartamella, «un filosofo che si dedica da decenni al giornalismo scientifico», come dichiarato sul suo sito. Dopo essere stato «conquistato dalla scienza», è diventato caporedattore a Focus (dal 2004), ha all’attivo alcune pubblicazioni, tra cui il libro «Parolacce» del 2006 (c’è anche un sito!), è stato vincitore del Premio Nazionale di Divulgazione Scientifica del CNR nel 2016 e ha ricevuto una nomination per il premio European Science writer of the year 2018.
In questo libro, troviamo una raccolta di scherzi realizzati da scienziati, raggruppati in diciassette categorie, dove sono elencati in ordine cronologico. Si comincia con i Tiri mancini, realizzati da Tesla, Fermi, Burdell, Feynman fino alla linguaccia di Einstein, si prosegue con i Malati immaginari, dove troviamo malattie fantasiose, come il blocco dello scrittore, la scrotalgia del violoncellista o la malattia del cactus. Le Dediche e le sigle sono riportate nella terza categoria, che si apre con il gene dedicato a Tafazzi, a dimostrazione che Aldo, Giovanni e Giacomo hanno lasciato un segno anche nel mondo scientifico. Fra i Colpi di scena, troviamo parecchi pesci d’aprile, come il finto iceberg trasportato dall’Antartide o il gorilla sulla Stazione Spaziale Internazionale, mentre tra gli Animali leggendari non poteva mancare il mostro di Loch Ness o il ritorno dei draghi a causa del riscaldamento globale. Una delle categorie più simpatiche è quella degli Autori farlocchi, da cui tutto è cominciato: troviamo autori inventati, autori che in realtà sono animali domestici, o nomi collettivi come Bourbaki. Le Supercazzole sono invenzioni che non esistono, ma che video o fotografie ritoccate hanno reso reali, come il turboencabulatore, mentre le Invenzioni fasulle sono quasi tutte pesci d’aprile divertentissimi, come la macchina che parla con le piante, il Wi-Fi da collegare al WC o la macchina per recuperare il tempo perso. Il pesce d’aprile del celebre matematico Enrico Bombieri, che aveva annunciato la dimostrazione dell’ipotesi di Riemann, rientra nella categoria Troppo bello per essere vero, mentre il capitolo successivo raggruppa quegli scherzi che fanno leva sulle nostre paure, come la famosa burla sul monossido di diidrogeno. Call to action racconta pesci d’aprile che comportano il coinvolgimento di un gran numero di persone, mentre la Satira scientifica ci regala grandi risate con la tribù dei Nacirema, uno scherzo così efficace da diventare «uno stratagemma didattico per riflettere sulla relatività degli usi culturali anche in campo giuridico». La sezione Finte scoperte presenta sei pesci d’aprile, tra i quali troviamo un misterioso monaco del XIII secolo, che ha scoperto i frattali prima di Mandelbrot. Grazie agli Scherzi autoironici scopriamo che l’umorismo degli scienziati aumenta con l’età e ritroviamo anche l’indimenticabile tunnel dei neutrini, che collega il Gran Sasso al CERN. Nella categoria Voli di fantasia, troviamo alcuni nomi importanti, come Martin Gardner, divulgatore matematico, e Asimov, celebre scrittore di fantascienza. La penultima categoria si intitola Scemo chi ci crede e propone scherzi particolarmente elaborati e fantasiosi, come il divieto di navigare su internet in stato di ebbrezza e l’ascensore di particelle del CERN. L’ultima categoria è riservata alle Manovre economiche, che ci propone l’acquisto della chiesa cattolica da parte della Microsoft, quello del MIT da parte della Walt Disney e la sponsorizzazione dei teoremi matematici.
Vito Tartamella apre il percorso con il racconto dello scherzo di Marconi del 1895, che dà il titolo al libro, uno scherzo goliardico nel quale il fisico aveva sfruttato le scoperte elettriche del periodo, restituendo la vita a un pollo ormai morto e spaventando una sua dipendente. Tutto, però, è cominciato nel 2014, quando Tartamella ha scoperto lo scherzo clamoroso che ha per protagonista Stronzo Bestiale: raccontato sul blog parolacce.org, ha avuto un’eco incredibile, permettendo all’autore di conoscere altri scherzi. Il lettore, spesso vittima di un’immagine stereotipata dello scienziato, sarà portato a cogliere «il lato giocoso, fantasioso, provocatorio, spiritoso e umano degli scienziati», grazie a questi 110 scherzi, raccontati a partire dal loro contesto. La maggior parte di questi episodi è collocata negli ultimi ottant’anni: il 60% degli scherzi è stato fatto dopo il 1990, grazie all’avvento di internet, che ha permesso agli scienziati di gestire la comunicazione in modo più diretto, e che ha fornito gli strumenti per manipolare la realtà, come mostrato dai video e dalle immagini, linkati nel corso della narrazione con i QR code. Fautori degli scherzi sono premi Nobel, divulgatori scientifici, inventori geniali, autorevoli riviste scientifiche (su ArXiv è stata creata una sezione apposita, gli «Acta Prima Aprilia»), enti di ricerca come la NASA o il CERN, università e musei, a dimostrazione del fatto che questi scherzi «trasudano intelligenza e fantasia, come ci si aspetta dagli uomini di scienza. E rivelano cosa pensano gli scienziati di sé stessi e del mondo.»
Gli scherzi presentati difficilmente mettono in ridicolo una persona o puntano alla vendetta e all’umiliazione: sono per la maggior parte scherzi satirici, che fanno emergere le nostre paure o i lati negativi delle cose. Offrono «l’occasione per esercitare un nuovo sguardo sul mondo», tant’è che a volte aprono la strada anche a sviluppi inattesi.
Nel capitolo conclusivo, Vito Tartamella fa un elenco delle discipline coinvolte e riflette sul fatto che «la maggior parte degli scherzi sono stati concepiti da ricercatori specializzati nelle scienze più complesse», forse per sdrammatizzare o per offrire un attimo di respiro. Non manca una riflessione sulle fake news, sottolineando che, anche se la propensione al complottismo ha reso più difficile lasciarsi andare allo scherzo, «abolire gli scherzi non aumenterebbe il numero delle persone ragionevoli», oltre al fatto che la capacità di scherzare è un aspetto positivo: «si può scherzare solo se si è disposti a non prendersi troppo sul serio».
Vito Tartamella ci parla della scienza con leggerezza, consentendoci di passare qualche ora di svago e regalandoci qualche risata. «Giocare con la scienza può essere affascinante», grazie a questi scherzi che «permettono davvero di guardare la scienza con occhi diversi.»