Visualizza articoli per tag: storia

Giovedì, 01 Dicembre 2016 14:22

Storia di pi greco

“C’è un numero che da anni mi perseguita. È una persecuzione dolce, che mi rende complice felice più che vittima indifesa, eppure quella presenza è continua, incombente, assillante.” Così esordisce Pietro Greco, che da quando aveva sei anni ha deciso di “seguire le vicende di questo numero fondamentale”. E quanto sia fondamentale, per la matematica ma non solo per lei, lo scopriamo, pagina dopo pagina, in questa breve storia della matematica, che comincia con i Babilonesi e si conclude con il pi-day, in un crescendo di sorprese e curiosità, visto che psembra essere davvero ovunque!

Archimede è il protagonista della prima metà del percorso, considerato che il primo capitolo si intitola “Prima di Archimede” e il quinto “Dopo Archimede”. Non potrebbe che essere così: Archimede, con il suo metodo di esaustione, ha anticipato il concetto di limite, proponendo quello che l’autore chiama un “metodo scientifico” per calcolare pe, senza altro strumento se non la sua mente, ha trovato un valore di questa costante estremamente preciso. Nella Grecia Antica tanti altri hanno legato il proprio nome a questa costante: basti considerare, per avere un’idea della sua importanza, i tre problemi dell’antichità, fra cui figura, appunto, la quadratura del cerchio oppure, citando i sempiterni “Elementi” di Euclide, il terzo postulato “dato un punto e un segmento è sempre possibile ottenere un cerchio”.

Con il sesto capitolo si torna in Europa, dopo la povera parentesi Romana e il lavoro intenso degli Indiani e degli Arabi, con Fibonacci e il suo “Practica geometriae”, pubblicato nel 1220. Nel XVI secolo, i tempi sono ormai maturi per ideare nuovi percorsi ed è il turno di Viète, con un metodo alternativo a quello di Archimede e, soprattutto, l’utilizzo di un’espressione analitica dove “vi fa capolino un assaggio di calcolo infinitesimale”. A questo punto, “la partita di caccia dei digit hunters è iniziata” e arriveremo alle 808 cifre decimali del 1948, senza l’utilizzo di alcuno strumento elettronico. Il calcolo infinitesimale di Newton e Leibnitz apre nuove porte anche a pe finalmente, nel 1706, i tempi sono maturi per dare un nome a questa costante: il nome viene proposto da William Jones, ma è la fama di Eulero che renderà universale la notazione tutt’ora in uso.

Pietro Greco ha setacciato tutta la storia della matematica, lo dimostrano le numerose citazioni di Kline e Boyer, alla ricerca del pi greco e questo dimostra come lo studio di p sia stato una presenza costante nel percorso di ogni matematico. La storia è rapida, Greco non ci risparmia i particolari, ma al tempo stesso il ritmo è incalzante. Il libro è semplice e alla portata di tutti, ma la leggerezza del testo non ci induca a considerarlo banale: la semplicità del percorso è una ricchezza ulteriore e un invito a ulteriori approfondimenti. 

Pubblicato in Libri
Venerdì, 12 Agosto 2016 11:42

Caccia allo zero

Il primo incontro di Amir D. Aczel con i numeri è stato così folgorante da restare impresso nella sua memoria: aveva cinque anni e, durante una crociera sulla ss Theodor Herzi – capitanata dal padre – è stato accompagnato da Laci, steward del capitano, ma anche brillante matematico laureatosi all’Università di Mosca, al casinò di Montecarlo. Per Aczel i numeri sono magici: “Mi sono innamorato della loro magia, associandoli nella mia mente a qualcosa di affascinante e proibito” e questo incontro si rinnova anche al Partenone, con i numeri dei Greci che erano in realtà lettere dell’alfabeto, e a Pompei, con i numerali dei Romani. È proprio durante l’infanzia, grazie all’influenza di Laci, che Aczel decide di dedicare la propria vita alla ricerca di una risposta sull’origine dei numeri.

Nel 1972, dopo aver prestato il servizio obbligatorio nell’esercito di Israele, approfitta del passaggio offertogli dal mercantile capitanato dal padre, per raggiungere gli Stati Uniti: si appresta a diventare uno studente all’Università della California, a Berkeley ed è ancora Laci a parlargli di un archeologo francese che “potrebbe aver trovato qualcosa sui numeri in Asia, alcuni decenni or sono; qualcosa d’importante a proposito del numero zero.” Laci non ricorda i dettagli e Aczel sembra dimenticare questa storia per un po’. Nel 2008, la telefonata di Andrés Roemer, conduttore di spettacoli televisivi molto popolari, lo invita a parlare della teoria delle probabilità durante una conferenza internazionale: per Amir e la moglie, Debra, è l’occasione per visitare il Museo Nazionale di Antropologia di Città del Messico. È qui che, dopo aver visto la Pietra del sole azteca, i due coniugi assistono alla proiezione di un video sulla matematica mesoamericana. Il sistema numerico dei Maya, sviluppatosi in completo isolamento rispetto al resto del mondo, riaccende la passione di Amir D. Aczel per la ricerca delle origini dello zero. È così che, nel 2009, approfondisce i propri studi in tal senso e comincia a progettare un viaggio in India.

Nel gennaio del 2011, Aczel incontra a Nuova Delhi Chandra Kant Raju, professore che sostiene che la matematica è nata in India, non nell’Antica Grecia: “Lo zero, il numero, e il nulla buddhista sono una cosa soltanto. Il nulla è un concetto filosofico profondo, ed è da lì che arriva il nostro zero.” Studiando gli scritti degli storici della scienza, Aczel si confronta con l’ipotesi di Moritz Cantor, secondo il quale i numeri hanno avuto origine in India e con l’aggressività di George Rusby Kaye, per il quale lo zero ha avuto origine in Europa.

Al rientro dall’India, Aczel si trova a un punto morto e, per superare l’impasse, la moglie lo invita a studiare altri sistemi numerici. Per caso, trova online la descrizione del matematico Bill Casselman, dell’Università della Columbia Britannica, che parla di uno zero ritrovato in Cambogia dall’archeologo francese George Cœdès, proprio il personaggio di cui aveva parlato Laci quarant’anni prima. Cœdès parla di una stele ritrovata in Cambogia, indicata come K-127, datata 683 d.C. e sulla quale compariva uno zero. Purtroppo, la stele sembra essere andata perduta: Aczel decide di ritrovarla e presenta una proposta di ricerca alla Alfred P. Sloan Foundation di New York per avere i fondi per i propri studi. All’inizio del 2013, Aczel è in Cambogia ed è grazie ad una serie di incontri fortunati e inaspettati che finalmente si trova al cospetto della stele: il proprietario della Galerie Mouhot di Bangkok, Eric Dieu, gli suggerisce il primo contatto, ma poi ci sono gli espatriati con i quali ha occasione di confrontarsi anche su questioni profonde, come Andy Brouwer, che gli fornisce il contatto di Rotanak Yang, il cui padre è il direttore della Angkor Conservation (dove troverà la stele), e Jean-Marc con il quale si trova a parlare proprio di filosofia della matematica. Per risolvere l’ultimo problema legato alla stele, Aczel incontra anche Hab Touch, un personaggio carismatico e molto preparato, che lavora per il Ministero della Cultura: il 9 aprile del 2013, si conclude l’avvincente ricerca di Aczel, grazie alla mail che gli conferma la collocazione della stele presso il Museo Nazionale della Cambogia a Phnom Penh.

 

Un libro che è il racconto di un percorso, sia esteriore che interiore: Aczel viaggia per il mondo alla ricerca dello zero, ma il viaggio avviene anche nella sua testa, visto che per una tale ricerca è necessario studiare e approfondire l’argomento. Leggere questo libro è avventurarsi nel percorso di Aczel, attraverso la storia della matematica, attraverso lo studio della filosofia orientale dove è nato il concetto di zero, attraverso gli incontri che l’autore ha fatto nell’ultima parte della sua vita. Colpisce, infatti, sapere che la ricerca dello zero si è conclusa nell’aprile del 2013 e l’autore è mancato un paio di anni dopo aver realizzato il suo sogno di trovare l’origine dei numeri.

Pubblicato in Libri
Domenica, 21 Giugno 2015 12:14

Il caso Eduard Einstein

TRAMA:

Nel 1930, il secondogenito di Albert Einstein e Mileva Marić, Eduard, fa il suo ingresso al Burghölzli, la clinica psichiatrica dell’Università di Zurigo. Nato il 28 luglio del 1910, Eduard aveva un’intelligenza geniale, ma anche molti comportamenti strani, fin dalla più tenera età, comportamenti che sfociano nel ricovero del 1930, dopo un episodio di violenza contro la madre: “Ci sono anche quelle voci che mi sussurrano all’orecchio parole che mamma non sente.” Eduard è schizofrenico e numerose sono le cure che vengono tentate per migliorarne le condizioni. Quando riceve la notizia del ricovero, Albert Einstein sta vivendo le persecuzioni naziste, tanto che nel maggio del 1933 decide di lasciare Berlino per fuggire in America. Prima di lasciare l’Europa, si ferma a Zurigo per vedere il figlio, che nel corso degli ultimi tre anni ha subito un ricovero dietro l’altro. Durante la breve visita, Albert e Eduard suonano insieme, ma l’incontro è comunque difficile: Albert chiede al figlio di seguirlo in America, ma il figlio mostra solo rabbia nei suoi confronti.

Nel 1935, Mileva tenta la cura dell’insulina del dottor Sakel e per un mese Eduard viene tenuto in coma, ma non ci sono grandi miglioramenti. Besso, il miglior amico di Einstein, è rimasto a Berna e tiene informato il padre dell’evoluzione della malattia. Vorrebbe che lo scienziato prendesse con sé il figlio e Albert prova a parlarne con i funzionari dell’immigrazione, ma non è possibile: solo ad Hans Albert è concesso di raggiungerlo.

Nel 1948, dopo un breve ricovero al Burghölzli a causa di un’ischemia, Mileva muore. Per Einstein è un momento di grande tristezza, mentre Eduard fatica a cogliere il senso di una simile notizia, ma anche se non ne è consapevole, ha perso i suoi punti di riferimento. Gli assegnano quindi una famiglia adottiva, sulle colline di Zurigo. Quando Carl Seelig, un giornalista, contatta Albert per diventarne il biografo ufficiale, gli chiede anche di incontrare Eduard e di poterne diventare il tutore. Lo incontrerà più volte e a lui Albert confiderà tutta la sua tristezza e la sua impotenza: “Si stupirà per il fatto che non intrattengo rapporti epistolari con Teddy. Dietro a questo, c’è qualcosa che non riesco ad analizzare del tutto. Bisogna però anche dire che temo di destare in lui sentimenti dolorosi, di diversa natura, per il solo fatto di farmi vivo con lui.” Per Einstein, Eduard resta un “problema senza soluzione”.

Albert muore a Princeton nel 1955, mentre Eduard conclude la sua esistenza al Burghölzli nel 1965.

 

COMMENTO:

Un romanzo corale, nel quale si alternano le voci di Albert Einstein, della prima moglie Mileva e del loro secondogenito, Eduard. Un romanzo intenso, come intensa è stata la vita di Eduard, con la malattia che ha compromesso la sua genialità.

Il ritratto di Einstein, con le sue luci e le sue ombre, che emerge da questo romanzo è un ritratto che non dimentica nulla: Einstein ha avuto il coraggio di combattere le ingiustizie del mondo, dal nazismo alla segregazione razziale contro i neri in America, facendosi persino accusare di comunismo dai media americani, ma non è mai stato in grado di andare a trovare il figlio, dopo averlo salutato nel 1933, al momento della sua partenza per l’America. Seksik, per certi aspetti, giustifica l’atteggiamento di Einstein, lo descrive come un padre che non ha saputo confrontarsi con la sofferenza di un figlio imperfetto, che lui stesso ha contribuito a mettere al mondo. È forse questa intensità ciò che colpisce di più nel romanzo: Einstein, ritratto in genere come l’uomo geniale, il grande scienziato che ha cambiato la nostra storia, è in questo libro soprattutto un padre, con la sua sofferenza e la sua umanità.

Pubblicato in Libri
Etichettato sotto
Giovedì, 16 Ottobre 2014 14:15

L'assassinio di Pitagora

TRAMA:

La vicenda ha inizio il 25 marzo del 510 a.C. e si conclude, quasi cinque mesi dopo, il 12 agosto. La scena iniziale vede Pitagora, l’uomo più influente del periodo, davanti ai sei uomini più importanti della sua scuola, i Grandi Maestri tra i quali vuole trovare un successore: “solo colui che fosse stato nominato suo successore avrebbe ricevuto gli ultimi insegnamenti, salendo così un altro gradino sulla scala tra l’uomo e la divinità”. All’improvviso, Cleomenide, uno dei Maestri, muore avvelenato dalla mandragola contenuta nel vino che sta bevendo.

Qualche giorno dopo, Akenon, egizio noto per la sua abilità a investigare, si trova a Sibari, presso Glauco, un aristocratico che vuole verificare un tradimento. Akenon ristabilisce la verità, ma solo l’intervento di Arianna, la figlia di Pitagora, lo salva dalle conseguenze. Pitagora vuole coinvolgerlo nelle indagini, ma inizialmente Akenon non ha intenzione di prendervi parte: solo la seconda morte lo convincerà a fermarsi a Crotone per risolvere il mistero. Arianna lo aiuta nelle indagini, mentre Cilone, membro del Consiglio dei Mille, trama contro i pitagorici e tenta di eliminare Akenon, guardato con ostilità perché straniero e perché cerca di risolvere il caso.

 

COMMENTO:

Il libro è fedele agli episodi storici del VI sec. a.C., periodo nel quale Pitagora è stato uno degli uomini più influenti. I personaggi principali come Milone, il genero di Pitagora, Cilone, vendicativo e meschino, e Telis, il capopopolo sibarita, sono realmente esistiti e reale è la vicenda che li vede coinvolti, almeno nella sua parte principale, se escludiamo la finzione letteraria del giallo.

Nonostante le sue 700 pagine, la vicenda scorre velocemente, mentre si viene catturati dal mistero e dalla storia di Akenon e Arianna, sia per il loro passato che per quanto si trovano a condividere.

Geniale la trovata dell’autore che presenta alcune pagine di un’inesistente Enciclopedia matematica, scritta da Socram Ofisis nel 1926 (Socram è Marcos al contrario): si comincia con la storia di Pitagora e si continua con la presentazione dei contenuti matematici, ovvero il pentacolo, il pi greco, la sezione aurea, il teorema di Pitagora e i numeri irrazionali.

Il libro è consigliato a tutti coloro che amano la lettura, perché è un modo diverso dal solito per imparare qualcosa della matematica e della filosofia del mondo pitagorico e della storia della fine del VI secolo a.C.

Per chi volesse avere ulteriori informazioni, può visitare il sito dell’autore http://www.marcoschicot.com, nel quale viene raccontata la genesi del libro, della quale è responsabile Lucia, la primogenita di Chicot.

Pubblicato in Libri
Sabato, 23 Agosto 2014 17:06

La sezione aurea

TRAMA:

L’antica Grecia è a ragione considerata la culla della nostra cultura: scienze, filosofia, arte, letteratura, ma soprattutto matematica, hanno trovato qui i propri natali. Platone ebbe il merito di scoprire i poliedri regolari, detti appunto platonici, e di costruire la realtà su di essi: questi sono legati indissolubilmente alla sezione aurea e, con ogni probabilità, l’interesse per il rapporto aureo è scaturito proprio dai tentativi di costruirli, anche se i primi a parlare di numeri irrazionali pare siano stati i pitagorici, nel VI sec. a.C.

Con la pubblicazione, nel 300 a.C., degli Elementi di Euclide, l’opera matematica più grandiosa e influente che sia mai stata scritta, il rapporto aureo comincia a diffondersi. Scavalcando gli arabi, che si occuparono principalmente di algebra, si arriva a Leonardo Fibonacci, che ha avuto il merito di diffondere in Europa le cifre indo-arabiche. Fibonacci usò consciamente il rapporto aureo nella soluzione di alcuni problemi e, formulando il quesito dei conigli, ne ha ampliato in modo decisivo la portata e le applicazioni, grazie al legame trovato successivamente da Keplero.

Nel Rinascimento, alcuni pittori hanno fornito contributi matematici di un certo rilievo: il più prolifico fu Piero della Francesca, con tre opere matematiche, con le quali dimostra che la prospettiva è fondata solidamente su basi scientifiche. Alcune delle questioni algebriche che affrontò furono riprese dal matematico Luca Pacioli, che, con il suo Compendio de divina proportione, presenta un riassunto dettagliato delle proprietà del rapporto aureo, portando a un rinnovato e diffuso interesse per la sezione aurea.

Il rapporto aureo divenne fondamentale anche per il funzionamento dell’universo, grazie al contributo di Keplero, che – trovato convincente il sistema copernicano – scelse di separare le orbite dei pianeti con i solidi platonici. Il modello era sbagliato, ma era sicuramente innovativo.

Nel mondo dell’arte, Paul Sérusier fece uso del rapporto aureo in alcune opere, soprattutto per “controllare, e in qualche caso disciplinare” le sue invenzioni, mentre Le Corbusier, che all’inizio aveva idee negative al riguardo, fece culminare la sua ricerca nel “Modulor”, che era in grado di conferire dimensioni armoniose a tutto, dalle maniglie delle porte agli spazi urbani. Numerosi autori hanno sostenuto che il rettangolo aureo sarebbe esteticamente più soddisfacente di tutti gli altri rettangoli, tanto che uno dei fondatori della moderna psicologia, Gustav Theodor Fechner decise di effettuare degli esperimenti, negli anni Sessanta dell’Ottocento, per verificarlo. Nel secolo scorso, ne sono stati sottolineati l’ingenuità e i difetti metodologici, visto che “non sembra esserci alcuna base razionale della teoria estetica che considera la sezione aurea un ingrediente decisivo della bellezza delle forme visive”. Anche in ambito musicale, le speculazioni riguardanti il rapporto aureo sono numerose: accanto a usi incontestabili del rapporto aureo, ve ne sono altri dovuti all’immaginazione dei loro scopritori. Tutti i tentativi di svelare la presenza di fin varie creazioni artistiche, dalla pittura alla musica alla poesia, si basano sul presupposto che esista un canone di bellezza ideale, ma la storia ci dice che non sempre alla base della bellezza c’è la sezione aurea.

Per realizzare le tassellature del piano, si è sempre saputo che il pentagono – il poligono più legato al rapporto aureo – non è adatto a ricoprire una superficie in modo completo e regolare. Nel 1974, Roger Penrose, fisico di Oxford, ha scoperto due schemi fondamentali di intarsio per coprire una superficie, sfruttando una simmetria quintupla, ovvero basandosi sul rapporto aureo. Apparentemente questi suoi studi dovevano restare confinati nell’ambito della matematica ricreativa, ma nel 1984 l’ingegnere israeliano Dany Schectman ha trovato una lega di alluminio con simmetria quintupla.

Nell’ultimo capitolo, l’autore si concentra sulle diverse interpretazioni della matematica: tra la visione della matematica come dotata di un’esistenza indipendente dal pensiero umano e quella di una matematica inesistente al di fuori del pensiero, l’autore sostiene che solo gli assiomi sono frutto di una scelta umana, ma dopo di essi la matematica gode in un’esistenza autonoma. “Il rapporto aureo è un prodotto della geometria, un’invenzione umana. Ma gli uomini non immaginavano in quale magico regno di fate ed elfi quel prodotto li avrebbe portati.”

 

COMMENTO:

Storia della matematica, arte, musica, poesia sono gli ingredienti di questo prezioso libro, nel quale la sezione aurea non viene solo definita, ma ne viene indagata la presenza nelle opere d’arte più famose e nei posti meno comuni, come i quasi-cristalli. Proprio il carattere eclettico del libro permette di incontrare i gusti di tutti i lettori, non solo degli appassionati di matematica ed è in particolare consigliato a tutti coloro che si interessano di arte. Il lettore viene guidato partendo dai contenuti più semplici, come il significato dei numeri per i pitagorici, fino ad arrivare ai frattali, con la loro bellezza e complessità. Peccato manchino le immagini a colori, almeno nell’edizione della Rizzoli.

Pubblicato in Libri
Martedì, 05 Agosto 2014 14:52

Più per meno diviso

TRAMA:

Nel primo libro pubblicato a stampa, Larte de labbacho – meglio noto come l’Aritmetica di Treviso – comparso nel dicembre del 1478, le quattro operazioni sono indicate con et per l’addizione, de per la sottrazione, in per la divisione e fia per la moltiplicazione. Dopo questa, le pubblicazioni si susseguono, in un crescendo di passione per le abbreviazioni.

I segni per l’addizione e la sottrazione compaiono nel 1481, nella Mercantile Arithmetic or Behende und hüpsche Rechenung auff allen Kauffmanschafft (l’aritmetica mercantile ovvero il calcolo agile e pulito per tutti i mestieri), del 1489 di Johannes Widmann. Per quanto riguarda il segno grafico di “=”, che sostituisce la frase “uguale a”, il merito va a Robert Recorde che nel suo “The Whetstone of Witte” del 1557, sceglie queste linee parallele proprio perché uguali tra loro.

Per la moltiplicazione, la croce di Sant’Andrea (×) è stata introdotta da William Oughtred, un reverendo che passa il proprio tempo a dar ripetizioni di matematica ai figli dei notabili locali. Nel 1631 pubblica un volumetto di piccole dimensioni, solo 88 pagine, suddiviso in 20 brevi capitoli, un testo elementare, noto come il Clavis. Solo più tardi John Collins proporrà il pallino, il simbolo più sintetico. Attualmente, ci viene proposta la croce alle elementari, ma, già alle medie, preferiamo il simbolo di Collins, fino ad arrivare al calcolo letterale, nel qual caso la moltiplicazione non è indicata con nessun segno.

Per quanto riguarda la divisione, possiamo trovare l’obelus (÷) sulle calcolatrici elettroniche, mentre abitualmente usiamo il colon ( : ): il primo è stato introdotto da John Pell, professore di matematica, anche se il libro è opera del suo allievo svizzero Johann Rahn, ma, come dichiara lui stesso, si tratta di “copie di documenti prodotti in sua presenza o che lui gli aveva dato da trascrivere”. Leibniz invece propone il secondo, che verrà diffuso da un suo allievo.

 

COMMENTO:

Il libretto, pubblicato come e-book per la collana Altramatematica, è una breve storia della matematica, limitata allo studio del percorso di chi ha inventato i segni delle quattro operazioni.

La vicenda mette in luce alcuni particolari interessanti: la difficoltà di introdurre nuove notazioni dà l’idea di un mondo, quello matematico, che si muove molto lentamente prima di accettare un’innovazione e anche il fatto che il passaggio dall’algebra retorica all’algebra sincopata avvenga abbastanza naturalmente, mentre è più difficile introdurre dei simboli. Il primo passaggio è istintivo, visto che tutti tendiamo ad abbreviare per scrivere più velocemente, mentre per il secondo la maggiore diffusione è legata al numero di persone che ne fanno uso, in particolare riferito agli allievi dei grandi matematici, che li pubblicizzano, non solo attraverso i libri ma anche e soprattutto con la corrispondenza.

Per quanto riguarda le quattro operazioni, non ci sono grandi nomi della matematica, tranne per quanto riguarda Leibniz, e non è facile reperire informazioni. Peppe Liberti condivide con noi questo percorso, che ci viene presentato con grande semplicità e con aneddoti che ne alleggeriscono il contenuto.

Pubblicato in Libri
Etichettato sotto
Domenica, 03 Agosto 2014 22:29

Sono il numero 1 - Io conto - Tutti in cerchio

TRAMA:

In questa trilogia dedicata al mondo della scuola primaria, Anna Cerasoli ci porta a visitare il mondo dell’aritmetica, con i numeri e le quattro operazioni nel primo volume, le frazioni e il calcolo delle probabilità nel secondo volume e la geometria nel terzo. Nel primo libro, dalle tacche sugli ossi alle cifre indo-arabiche, la maestra presenta i numeri paragonandoli al legno lavorato dal falegname: per svolgere al meglio il proprio lavoro, questi ha bisogno dei propri attrezzi, che in matematica corrispondono alle operazioni. L’autrice parte con l’addizione e prosegue con la moltiplicazione e i numeri primi, con la sottrazione che porta alla nascita dei numeri negativi, lo zero con le sue particolarità, la divisione che porta ai numeri decimali e infine le potenze.

Nel secondo volume, il piccolo protagonista esplora il mondo delle frazioni, un mondo a parte in cui le cose funzionano al contrario, perché aumentando il denominatore di una frazione, questa diventa sempre più piccola. Nel libro, non mancano i riferimenti alla storia della matematica: Gauss, Sophie Germain, Sofja Kovalevskaja, Pitagora e la musica, Talete con le proporzioni.

Sia nel primo che nel secondo volume lo sviluppo della storia è intervallato dalle “furbate”, ovvero suggerimenti per affrontare al meglio la matematica: nel primo libro troviamo alcuni suggerimenti per svolgere più in fretta le operazioni, come le moltiplicazioni per 9, per 4, per 5… mentre nel secondo libro le “furbate” aiutano nel calcolo delle percentuali, sia a mente che con la calcolatrice. Il primo volume, inoltre, si conclude con alcune pagine quadrettate, intitolate “Provaci tu!”, mentre nel secondo volume compare il gioco del Memory Mat.

Il terzo volume è a sé ed è dedicato alla geometria: il protagonista ha un nuovo compagno di avventure, Nuvola, un cane al quale servirebbe conoscere la geometria per poter entrare nella cuccia con il suo osso. Anche in questo volume non manca il riferimento alla storia della geometria, visto che si comincia con i tenditori di corde in Egitto, si prosegue con Euclide, il quale ci ricorda che non esistono vie regie per accedere alla matematica, e poi si prosegue con l’esplorazione del mondo della geometria piana, fino ad arrivare alle formule per calcolare le aree dei poligoni. La geometria è “una palestra per irrobustire il nostro cervello” e la dimostrazione è data proprio dai ragionamenti che accompagnano il percorso.

 

 

COMMENTO:

La trilogia in questione è consigliata ai ragazzi della scuola primaria, che possono affrontare le proprie difficoltà in matematica facendosi accompagnare dal piccolo protagonista, che guida la scoperta di questo nuovo mondo così affascinante. 

Pubblicato in Libri
Giovedì, 31 Luglio 2014 17:32

I cacciatori di numeri

TRAMA:

Usiamo abitualmente i numeri, senza renderci conto di quanto essi siano carichi di mistero: intrecciati da relazioni strane, con la realtà fisica hanno invisibili legami, che ci permettono di indagare i misteri più oscuri dell’universo. Tutto comincia con Hermann Minkowski, che si guadagna una punizione dal professore di fisica quando afferma che la materia è fatta di numeri. Già Galilei aveva affermato che il libro della natura è scritto con caratteri matematici e Minkowski si impone di decifrare questo libro della natura. Con Hilbert e Sommerfeld sono legati da un “sodalizio di pensiero e di amicizia”, come dimostrano le interminabili passeggiate durante le quali discutono di tutto, dalla filosofia alla poesia, dalla musica alla matematica. E c’è lo zampino di Minkowski quando Hilbert, nel 1900, all’apertura del Secondo Congresso Internazionale di Matematica, fa un discorso nel quale parla di ventitré problemi di portata universale, per stabilire in quale direzione stia andando la matematica. “Chi non sarebbe felice di poter alzare il velo dietro il quale si cela il futuro; gettare lo sguardo sui progressi dell’avvenire della nostra scienza e sui segreti del suo sviluppo nei secoli a venire?” è l’incipit del suo discorso. Tra i vari problemi proposti, alcuni ancora senza soluzione, spicca l’ottavo, il preferito di Hilbert: si tratta dell’ipotesi di Riemann, che, se venisse dimostrata, ci porterebbe a individuare la distribuzione dei numeri primi.

Dopo la pubblicazione dei rivoluzionari articoli di Einstein, allievo di Minkowski, quest’ultimo parla, nel settembre del 1908, a un’assemblea annuale di medici e naturalisti, presentando per la prima volta lo spazio-tempo, ovvero l’universo a quattro dimensioni, in termini puramente matematici. Anche Hilbert e Sommerfeld vedono nello spazio-tempo l’avvenire della fisica e la morte prematura di Minkowski non interrompe il procedere della scoperta: Sommerfeld riprende la conferenza, per migliorarne la presentazione matematica e, nel 1916, riesce a dimostrare che “il cuore della realtà vive di numeri!”, trovando un numero universale che regola la forza elettromagnetica, ovvero la “costante di struttura fine”. La strada percorsa da Sommerfeld viene seguita anche da Herman Weyl, uno dei matematici più influenti del XX secolo, che nel 1919 pubblica un articolo sugli “Annali di fisica” con strane speculazioni su un numero puro che dà il rapporto tra la forza elettromagnetica e quella gravitazionale e da Arthur Eddington, che nel 1931 scatena il caos quando parla del rapporto tra la massa del protone e quella dell’elettrone.

Alla luce di queste costanti, nell’estate del 1951 Einstein si domanda se Dio abbia avuto scelta creando l’universo, ma il fatto che le costanti non possano assumere valori diversi da quelli che hanno assunto lascia pensare che Dio non abbia avuto alcuna scelta, come afferma anche sir Roger Penrose, uno scienziato inglese, quarant’anni dopo. Tutti i numeri “su cui si basa il nostro universo sono dunque comparsi molto prima del primo secondo. Il tutto con precisione allucinante, corrispondente a uno scostamento inferiore al miliardesimo di miliardesimo di miliardesimo.” L’obiettivo del Cern di Ginevra, negli ultimi anni, è stato proprio quello di indagare gli istanti successivi al Big Bang, grazie all’accelerazione delle particelle fino a una velocità prossima a quella della luce. La ricerca del “bosone di Higgs” porta con sé la convinzione che l’essenza dell’universo sia nel “numero dell’universo”, 10120 bit di informazioni, dove per informazione si intende la realtà numerica che codifica le proprietà dell’universo. In altre parole, non siamo così lontani dalla scuola di Göttingen e dai tre cacciatori.

 

COMMENTO:

Il libro ci presenta una carrellata di matematici: tra coloro che hanno “costruito” il mondo matematico di Hilbert, Minkowski e Sommerfeld, spiccano Riemann, Klein, Cantor e l’ostinazione di Kronecker che ha tentato di ostacolare in tutti i modi il progresso matematico, mentre tra coloro che hanno “fruito” del loro genio, ci sono anche dei fisici: Fermi, Feynman, Ramanujan, Weyl, Gödel, von Neumann.
Il libro tratteggia la storia di centocinquant’anni di matematica e di fisica. La lettura è alla portata di tutti: anche gli aspetti più complessi vengono spiegati con chiarezza, attraverso metafore che ci portano a capire in profondità persino le scoperte più recenti della fisica. Le numerose biografie dei vari personaggi che compaiono aiutano, inoltre, ad alleggerire la lettura e a sentire più vicini i progressi della fisica degli ultimi anni, spesso considerati così lontani.

Pubblicato in Libri
Venerdì, 11 Luglio 2014 14:12

Il caso Cartesio

TRAMA:

Il romanzo parla della morte di Cartesio, tutt’ora oggetto di numerose congetture e ipotesi: la polmonite non convince il dottor Eike Pies, medico e storico tedesco, che ha scoperto una lettera scritta da Van Wullen, secondo medico della regina Cristina di Svezia, a un collega. Nella lettera, il medico descrive i sintomi di Cartesio, non riferibili alla polmonite, ma all’avvelenamento. Nel romanzo, Bondi parte dagli avvenimenti storici per presentarci la sua verità: ha incontrato personalmente il dottor Pies, dopo aver letto il suo libro, e ha deciso di scriverne a sua volta per riproporre la necessità di ristabilire la verità all’attenzione generale.

L’intreccio si sviluppa seguendo tre linee principali, che vengono presentate alternate: la morte di Cartesio, la conversione della regina Cristina e, ai giorni nostri, il test dell’assorbimento atomico sul teschio. Nella parte riguardante la morte di Cartesio, l’autore ci presenta le varie ipotesi di complotto che sono state indagate nel corso degli anni, con i personaggi che ruotano attorno alla figura del filosofo. La parte riguardante la conversione della regina Cristina ha, tra gli attori principali, Raimondo Montecuccoli, generale dell’impero asburgico, che, quattro anni dopo la morte del filosofo, riceve l’ordine di Ferdinando III d’Asburgo di recarsi a Stoccolma per un’importante missione diplomatica. Il generale ha il compito di accompagnare Cristina a Roma, visto che ha manifestato il desiderio di convertirsi al cattolicesimo, ma, nel corso della vicenda romanzata, Montecuccoli – che ha capito che la morte di Cartesio ha coinvolto emotivamente la regina – decide di indagare per capire le reali cause della morte del filosofo.

L’ultima parte della storia è ambientata nel presente, precisamente nel 2009 e tra i protagonisti, oltre al dottor Eike Pies, ci sono Elisabetta Palatini, dottoranda in filosofia presso l’Università di Parma, e Thomas Doyle, professore di filosofia presso la Oxford University. Partendo proprio da uno scritto lasciato da Montecuccoli, una sua lettera indirizzata al Papa e scritta sul letto di morte, i due studiosi vogliono stabilire la verità riguardo la morte di Cartesio e decidono di trafugarne il teschio, conservato al Musée de l’Homme di Parigi per poterlo sottoporre al test dell’assorbimento atomico.

 

COMMENTO:

L’intreccio delle tre vicende permette di avvicinarsi poco a poco alla conclusione, scoprendo la verità dell’autore sulla morte di Cartesio. Al termine del romanzo, inoltre, la nota di Bondi permette di ricostruire la verità storica della vicenda e stupisce scoprire quanto l’autore abbia mantenuto il legame con la realtà.

Il romanzo è davvero coinvolgente e alla portata di tutti, consigliato a chi vuole “incontrare” la figura di Cartesio in un modo non convenzionale. La verità sulla sua morte è ancora oggetto di congetture e ipotesi, ma chissà che prima o poi si possa giungere a una conclusione, grazie anche alle nuove analisi che la scienza ci mette a disposizione.

Pubblicato in Libri
Martedì, 08 Luglio 2014 20:18

Il teorema vivente

TRAMA:

Da otto anni all’École Normale Supérieure di Lione, a marzo del 2008 Cédric Villani decide di dimostrare l’equazione di Boltzmann non omogenea. Fin dalle prime pagine, appare evidente che la matematica si costruisce grazie al confronto con gli altri matematici: Clément Mouhot, al quale sette anni prima ha “messo il piede nella staffa”, suggerisce a Villani di usare lo smorzamento di Landau e Étienne Ghys, forse il miglior conferenziere di matematica al mondo, suggerisce il collegamento con la KAM, ovvero la teoria Kolmogorov-Arnold-Moser.

Anche le piccole intuizioni vanno dimostrate e la strada è davvero lunga. Gran parte del lavoro verrà svolto, a distanza, da Villani e Mouhot, in un confronto continuo, gestito via posta elettronica. Con l’inizio dell’anno nuovo, Cédric Villani si trasferisce infatti a Princeton per sei mesi, per consacrarsi interamente ai propri “amori matematici”. L’invito arriva al momento giusto, dato che un soggiorno a Princeton significa “nessun libro, nessun incarico amministrativo, nessun corso”, ovvero Villani potrà dedicarsi alla matematica senza distrazioni.

Due mesi prima, Villani ha ricevuto la nomina come nuovo direttore dell’Institut Henri Poincaré: da un lato sarebbe una sfida stimolante, dall’altro ha paura di restare schiacciato dagli impegni amministrativi, oltretutto la moglie, Claire, ha ricevuto una proposta di lavoro allettante nei corsi dottorali in geoscienze dell’Università di Princeton. A fine febbraio, Villani riceve una mail dall’IHP, proprio quando ormai ha deciso di rifiutare l’offerta della dirigenza: decide di tornare in Francia alla fine del mese di giugno, visto che hanno accettato tutte le condizioni che lui aveva imposto.

Il lavoro con Mouhot è, a tutti gli effetti, un lavoro di squadra: quando uno è titubante, è l’altro che trascina, quando uno è pessimista, l’altro fa l’ottimista e quando, a marzo, Clément ha una nuova idea, Cédric sente la paura che il suo subalterno lo stia superando. Il lavoro è diventato più intenso, con un centinaio di mail scambiate a febbraio e il doppio a marzo. Con la modifica numero 36, Clément e Cédric sono a quota 130 pagine, ma c’è ancora parecchio da fare: “Ci sono talmente tante cose sulle quali dovrei concentrarmi che lavoro fino alle due di mattina da diversi giorni”. E il tempo incalza: “annuncio il risultato a Princeton tra due giorni…”, “la dimostrazione è corretta almeno al 90 % e tutti gli ingredienti significativi sono stati identificati”. L’accoglienza è polemica, ma le critiche permetteranno al lavoro di progredire più rapidamente: bisogna “mettersi in posizione vulnerabile per diventare più forti”.

È arrivato anche l’ultimo giorno a Princeton, il 26 giugno: siamo “riusciti a far stare in piedi la dimostrazione, abbiamo riletto tutto. Che emozione quando abbiamo messo on line il nostro articolo!”. A fine giugno, Villani è a Lione, per prendere le proprie cose e cominciare come direttore all’IHP dal primo luglio: “Il lavoro effettuato a Princeton mi ha trasformato, come un alpinista di ritorno a valle che ha ancora la testa piena delle cime che ha esplorato. La sorte ha deviato la mia traiettoria scientifica a un punto tale che non potevo immaginare sei mesi fa.”

A ottobre, ottiene la risposta dalla rivista Acta Mathematica, la “rivista di ricerca matematica che molti considerano come la più prestigiosa di tutte”: l’editore non è convinto che i risultati riportati nel mastodontico articolo di 180 pagine siano definitivi e quindi lo rifiuta. Villani è disgustato. Nonostante contemporaneamente riceva la notizia di aver vinto il premio Fermat, questo non basta a compensare la frustrazione del fallimento.

All’ennesima critica, Villani decide di riprendere tutto in mano e così, a fine novembre, è “Tutto rifatto, tutto semplificato, tutto riletto, tutto migliorato, tutto riletto ancora una volta.”

A febbraio del 2010, mentre Villani è impegnato nella riorganizzazione dell’ufficio, riceve la telefonata di László Lovász, il presidente dell’Unione matematica internazionale che gli comunica la vittoria della medaglia Fields, che Villani accetta con entusiasmo, promettendo di mantenere il segreto per sei mesi. La medaglia gli viene conferita a Hyderabad, in India, il 19 agosto: “Circa tremila persone mi acclamano nella gigantesca sala conferenze dell’hotel di lusso che ospita il Colloquio internazionale dei matematici, annata 2010.”

A febbraio del 2011, finalmente l’articolo è accettato anche da Acta Mathematica!

 

“Non ha prezzo un sentiero senza illuminazione! Quando non c’è la luna, non si ha neanche una visibilità di tre metri. Il passo accelera, il cuore batte un po’ più in fretta, i sensi restano sul chi vive. Uno scricchiolio nei boschi fa drizzare le orecchie, ci si dice che la strada è più lunga del solito, ci si immagina un malintenzionato in agguato, ci si trattiene a malapena dal mettersi a correre. Questa galleria buia è un po’ come la fase buia che caratterizza l’inizio di un progetto matematico.”

 

COMMENTO:

Un libro che non può mancare nella biblioteca di un insegnante di matematica: l’avventura di Villani è l’avventura di chiunque voglia convivere con la matematica, a qualsiasi livello. Il cammino di “scoperta” del teorema è il cammino di chiunque voglia risolvere un problema: le false partenze, le fatiche, le vittorie, i momenti di stanchezza, le paure, l’entusiasmo, la passione… non manca nulla!

Per gli alunni leggere questo libro potrebbe essere un’illuminazione, un modo per comprendere, finalmente, che la matematica è un’avventura, un percorso a volte accidentato e pieno di ostacoli, ma ricco di soddisfazioni. E il matematico, al contrario di quanto pensa l’alunno medio, non è colui che non fa fatica, ma colui che riesce a mettere la propria passione al di sopra della fatica.

Pubblicato in Libri
Pagina 4 di 9

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy