TRAMA:
La lettera di Pascal, datata 24 agosto 1654, è l’esempio di come un singolo documento matematico possa cambiare il corso della storia: ha infatti segnato la nascita della moderna teoria della probabilità e al giorno d’oggi, affari, politica, difesa, guerra, scienza, ingegneria, medicina, sport, finanza, edilizia, trasporti, attività ricreative e molti altri aspetti della vita quotidiana sono regolati da calcoli probabilistici: “Ciò che ora diamo per scontato fu un immenso passo avanti nel pensiero umano, reso possibile soltanto da un significativo sforzo intellettuale”.
Il quesito affrontato da Pascal e Fermat è stato formulato per la prima volta nel 1494, nel libro di Luca Pacioli Summa de arithmetica, geometria, proportioni et proportionalita: in che modo dei giocatori dovrebbero spartirsi la posta, qualora fosse per loro necessario abbandonare la partita, prima del suo termine? Questo è noto come il problema dei punti e per risolverlo è necessario saper guardare al futuro. A Pascal e Fermat occorsero diverse settimane di intenso lavoro intellettuale per risolvere il problema, a dimostrazione del fatto che “anche gli esperti possono trovare difficile padroneggiare una nuova idea matematica”. Pacioli aveva ipotizzato che la soluzione fosse quella di dividere la posta in base alla situazione raggiunta di fatto, ma il ragionamento non è corretto, come venne dimostrato nel 1539 da Girolamo Cardano. Il problema venne proposto a Pascal da Antoine Gombaud, un giocatore d’azzardo. Pascal trovò una soluzione, ma, non sicuro della correttezza del ragionamento, chiese a Fermat se condivideva la sua strategia.
Nello scambio epistolare che seguì, Pascal dimostra di essere un matematico incredibilmente dotato, ma, come non fatica a riconoscere, Fermat era ancora meglio. I due uomini adottarono approcci diversi alla soluzione del problema: entrambi i metodi erano corretti, ma la soluzione di Fermat era di gran lunga la migliore. La soluzione di Pascal “è difficile da seguire anche per un matematico di professione”, mentre l’approccio di Fermat, “che va direttamente al fulcro del problema e fa soltanto ciò che è richiesto per ottenere la risposta cercata, dà prova di un’autentica genialità”.
“Pascal e Fermat non avrebbero mai compreso pienamente che il loro scambio epistolare avrebbe rivelato all’umanità un modo del tutto rivoluzionario con cui gettare un’occhiata nel futuro, cambiando drasticamente la vita umana”. Per loro si trattava probabilmente solo di un rompicapo matematico, senza alcuna utilità per la realtà quotidiana.
Nello stesso anno della morte di Pascal, il 1662, il libro Natural and Political Observations Made Upon the Bills of Mortality di John Graunt cambiò ulteriormente il modo di vedere la teoria della probabilità, segnando la nascita della statistica moderna. “Graunt e il suo pamphlet fecero uscire la teoria della probabilità di Pascal e Fermat dalle sale da gioco per portarla nella realtà quotidiana”:
Nel 1657, Christiaan Huygens pubblicò De ratiociniis in ludo aleae, considerato negli anni successivi un testo fondamentale per la teoria della probabilità: Huygens superò il lavoro di Pascal e Fermat, applicando i metodi della teoria della probabilità nella vita reale, con l’introduzione del concetto di “aspettativa”.
Il lavoro venne portato ulteriormente avanti dalla famiglia Bernoulli: Jakob enunciò la legge dei grandi numeri, dimostrando che la frequenza relativa di un evento permette di predirne la probabilità tanto più accuratamente, quanto più numerosi sono i casi osservati. Nikolaus pubblicò, nel 1709, il libro De usu artis conjectandi in jure, nel quale discuteva la stima della durata della vita umana, segnando un importante passo avanti nella gestione del rischio. Daniel consentì la soluzione dell’enigma noto come paradosso di San Pietroburgo, osservando il modo in cui la gente valutava soggettivamente i rischi e compiendo una profonda osservazione riguardo all’utilità.
Le idee di Nikolaus Bernoulli vennero riprese da Abraham de Moivre, che nel 1733, con il libro Doctrine des chances, mostrò come un insieme di osservazioni casuali si distribuiscono attorno al valore medio, ovvero studiò la distribuzione normale, che otto anni dopo Karl Friedrich Gauss comprese di poter usare per stimare il valore dei dati. La misura di de Moivre, nota come deviazione standard, permise di giudicare se un insieme di osservazioni fosse sufficientemente rappresentativo dell’intera popolazione.
L’ultimo personaggio della storia è Thomas Bayes: riconosciuto oggi come una mente matematica brillante, durante la sua vita non pubblicò nessuno scritto originale, ma furono notate le sue abilità scientifiche, visto che era un membro della Royal Society. Il suo approccio alla probabilità fu rivoluzionario e aveva una vasta gamma di applicazioni, visto che permetteva di rivedere la stima di una probabilità alla luce di nuove informazioni. Ignorato per quasi due secoli dagli statistici e dai teorici della probabilità, il metodo di Bayes divenne sempre più diffuso a partire dagli anni Settanta del Novecento, grazie anche alla disponibilità di potenti computer che hanno reso possibile eseguire iterativamente il processo. Il punto di forza dell’approccio di Bayes è nel fatto che può guidarci quando le nostre intuizioni sono sbagliate.
COMMENTO:
Siamo abituati a pensare ai grandi matematici del passato come a persone che non hanno mai avuto alcuna difficoltà a capire una formula, un procedimento mentale: Pascal è la dimostrazione che anche i grandi hanno avuto le loro difficoltà. Ma la chiave di tutto, la differenza tra noi e i grandi, sta forse nella tenacia, nella volontà di capire, di aprire nuovi orizzonti.
Un libro semplice, anche per non addetti ai lavori, che, a partire dalla lettera di Pascal del 1654, traccia la storia del calcolo delle probabilità fino alla nota formula di Bayes e fino alle intuizioni di de Finetti. Consigliato a tutti coloro che non nutrono grande simpatia per questa branca della matematica, solo all’apparenza semplice, ma in realtà complicata e affascinante, nella stessa misura in cui mette in crisi le nostre intuizioni e le nostre errate convinzioni.
TRAMA:
Questa è la storia di un matematico, Armand Duplessis, che aveva davanti a sé un brillante futuro, ma che ha scelto di impegnare la propria vita nel tentativo di dimostrare la congettura di Goldbach. I singoli capitoli sono quasi separati, visto che il protagonista muore ben tre volte e ce lo spiega l’autore nell’introduzione: La morte del protagonista in un capitolo non incide, né deve farlo in alcun modo, sul suo comportamento nel capitolo seguente. Lo si ritrova vispo come una funzione che, superato qualche valore non ammesso, risuscita in un batter d’occhio: affondata verso – ∞ un istante fa, ora si avvicina a + ∞, pronta a nuovi asintoti.
Nato il 16 aprile 1964, ovvero 16.4.64, che potrebbe anche essere letto come 16 x 4 = 64 o come 24.22.26, Armand Duplessis sente che le potenze di 2 hanno in qualche modo segnato la sua vita. A sedici (=24) anni, seguì la serie televisiva Gli enigmi che sfidano l’umanità, durante la quale venne presentata la congettura di Goldbach: ogni numero pari è la somma di due numeri primi. Quella stessa sera, a tavola, annunciò la sua decisione. Sarebbe diventato un matematico. Non un professore di matematica, intendiamoci: un matematico. Perché aveva intenzione di essere il primo a dimostrare la congettura di Goldbach.
Scegliendo di dedicarsi alla teoria dei numeri, venne assunto dall’università di Lione: agli inizi, Armand era uno di quei pochissimi ricercatori che si mostrano all’altezza delle grandi speranze riposte in loro. In moltissimi ambiti della teoria dei numeri i suoi risultati furono stupefacenti, le sue intuizioni decisive, le sue pubblicazioni numerose, le sue idee fondamentali. Ma a 32 (=25) anni, Armand decise di dichiarare che avrebbe proseguito le sue ricerche nel tentativo di dimostrare la congettura di Goldbach.
Dopo essersi dedicato instancabilmente, in ogni momento della giornata, alla congettura, un giorno Armand decise di dimenticarsene, di liberare la propria mente, nel tentativo di pensarci meglio. Esattamente come fece Poincaré che, dopo essersi concentrato molto tempo e inutilmente su un problema, decise di partire per una gita e, mettendo piede sull’omnibus di Coutances, riuscì a trovare la soluzione. Armand sperava di trovare nell’accensione del proprio computer ciò che Poincaré aveva trovato salendo sull’omnibus. Ma non successe nemmeno questo… ha luogo semplicemente la sua seconda morte, mentre si smaterializza osservando la propria immagine.
Dopo la sua morte, i colleghi si trovano a farne un “elogio funebre” un po’ particolare, visto che commentano anche cinicamente la scelta di Armand di dedicare tutta la propria vita a una congettura così difficile: «Avrebbe potuto fare della grande matematica. Forse avrebbe potuto farne, voglio dire. Forse. Non lo sapremo mai, adesso. Ma se c’è una cosa certa, è che si è ostinato stupidamente».
COMMENTO:
Non bisogna cominciare la lettura di questo libro aspettandosi un romanzo normale, con un inizio e una fine. È un romanzo dai molti inizi e dalle tante fini – come dimostrano le tre morti del protagonista – un romanzo fatto in realtà da tanti singoli racconti un po’ fantastici, che descrivono però molto bene la vita di un matematico.
Non mancano numerosi agganci con la realtà matematica: i colleghi di Armand hanno, ad esempio, nomi che imitano quelli dei celebri matematici e cioè Potagore (Pitagora), Pacaré (Poincaré), Barbacchi (Bourbaki), Couchy (Cauchy), Bèrel (Borél), Lebogue (Lebesgue). Simpatica inoltre è la descrizione della presunta scoperta, da parte della moglie di Armand, dell’amante del matematico, secondo una deduzione fatta dopo aver rilevato l’improbabile ricorrenza dei multipli di 99.
Il testo è scorrevole e divertente e, verso la fine, l’autore ci parla anche di Goldbach e della comparsa della famosa congettura durante uno scambio epistolare con Eulero, avvenuto il 7 giugno 1742, ovvero 7.6.42… come nel caso della data di nascita del protagonista: 7 x 6 = 42.
TRAMA:
A partire dalla matematica dell’antichità, essenzialmente greca, Cresci tratteggia la storia della matematica attraverso i secoli, seguendo il percorso con brevi descrizioni delle curve piane. Non ci sono trattazioni matematiche o dimostrazioni: ci siamo sforzati di legare ogni curva che viene presentata nel testo al suo ideatore e di quest’ultimo tratteggiare la personalità: le biografie dei matematici sono spesso ricche di episodi, di avvenimenti, di aneddoti curiosi, e la parte matematica delle curve non può prescindere dalle circostanze della loro creazione.
Grazie ai tentativi dei greci di ottenere le soluzioni dei tre grandi problemi dell’antichità – la quadratura del cerchio, la duplicazione del cubo e la trisezione dell’angolo – si ottennero altre curve: le lunule di Ippocrate, la trisettrice di Ippia, la quadratrice di Dinostrato.
Procedendo nella storia, incontriamo Archimede: al suo nome sono legate la spirale, una curva piana, tracciata da un punto che si sposta uniformemente lungo una semiretta, mentre questa a sua volta ruota uniformemente attorno al suo estremo e la circonferenza, visto che il genio dell’antichità raggiunse una buona approssimazione del p, inventando un procedimento iterativo.
Nel XVII secolo si celebra l’inizio della geometria analitica: René Descartes operò una vera rivoluzione, identificando una relazione algebrica, e cioè un insieme di simboli formali, con una curva, o meglio con un luogo geometrico, e cioè con l’insieme di tutti i punti che soddisfano ad una data proprietà geometrica. L’utilizzo delle coordinate non era una novità, perché già Apollonio aveva utilizzato un sistema analogo. Le coniche erano già comparse secoli prima: Menecmo le definì e utilizzò per primo, ricavando la parabola, l’ellisse e l’iperbole dall’intersezione di coni circolari retti (rispettivamente con angolo al vertice retto, acuto e ottuso) e piani perpendicolari alla generatrice del cono. Euclide scrisse quattro libri sulle sezioni coniche, probabilmente andati perduti perché superati dall’opera di Apollonio, Le coniche, trattato nel quale dà alle curve il nome con cui le conosciamo anche oggi ed effettua una generalizzazione, ottenendo le curve da uno stesso cono e variando l’inclinazione del piano di sezione. Le sue sono innovazioni coraggiose e profonde.
Altra curva degna di nota è la cicloide, “la bella Elena” della geometria, che non è altro che il percorso che fa nell’aria il punto di una ruota, quando essa rotola nel suo movimento normale, dal momento in cui il punto comincia a sollevarsi da terra, fino al momento in cui la rotazione continua della ruota l’abbia ricondotto a terra, dopo un giro completo. Se la curva fissa non è una retta ma una circonferenza, la cicloide diventa epicicloide se la circonferenza che rotola è all’esterno, ipocicloide se rotola all’interno. I moti epicicloidali furono usati da Tolomeo per descrivere il movimento di alcuni pianeti.
Tra le curve più famose citate nel libro: la concoide di Nicomede, la cissoide di Diocle, la lumaca di Pascal (padre), la lemniscata di Bernoulli, la spirale logaritmica, la catenaria, la cardioide, la nefroide, la strofoide, la clotoide – studiata inizialmente da Eulero –, la versiera di Gaetana Agnesi – nota in inglese come witch of Agnesi –, la funzione di Gauss, la funzione logistica di Verhulst – per lo studio della crescita demografica di una popolazione –, la curva di Peano, la polvere di Cantor, la curva a fiocco di neve, il setaccio apolloniano e i frattali di Mandelbrot.
Le appendici che concludono il testo riprendono tre argomenti oggetto di presentazione nel testo: la biblioteca di Alessandria, l’invenzione della Pascaline e la storia di Lady Lovelace e Charles Babbage, che precorsero i tempi concependo l’Analytical Engine – il predecessore dell’odierno pc – già nel XIX secolo.
COMMENTO:
Visto l’elevato numero di argomenti, curve, aneddoti, non si può che trattare di un “assaggio” di storia della matematica, da sottoporre a ulteriori approfondimenti. Semplice e scorrevole, la sua lettura è consigliata a tutti.
© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy