TRAMA:
In questo libro, l’autore ci offre alcune delle idee principali sull’odierna teoria delle stringhe: i primi tre capitoli sono di carattere introduttivo, perché ci spiegano i concetti cruciali per la comprensione delle stringhe, come l’energia, la meccanica quantistica e la relatività generale. Nei successivi tre capitoli, l’autore cerca di rendere ragionevole e ben motivata la teoria delle stringhe e gli ultimi due sono dedicati ai tentativi più attuali di connessioni tra la teoria delle stringhe e gli esperimenti con le collisioni di particelle ad alta energia.
Nonostante nella teoria delle stringhe siano estremamente importanti le equazioni, l’autore ha scelto di “mettere in parole” le equazioni più importanti, consapevole del fatto che comportano calcoli di cui non è possibile dare una trattazione divulgativa. Eppure la matematica della teoria delle stringhe, per quanto sia importante, non riduce la teoria a una collezione di equazioni: “Le equazioni sono come le pennellate di un dipinto: senza di queste il quadro non ci sarebbe, ma un quadro è più di un’ampia collezione di pennellate.”
Si ritiene che la Teoria del Tutto sia data dalla teoria delle stringhe, ma non ha conferme sperimentali ed inoltre con le sue dimensioni supplementari, le fluttuazioni quantistiche e i buchi neri, non è per nulla semplice, tanto che persino gli esperti ammettono di non comprenderla. Per la teoria delle stringhe, gli oggetti fondamentali che costituiscono la materia non sono particelle, ma stringhe: un elettrone è in realtà una stringa, che vibra e ruota, ma troppo piccola persino per essere investigata dai più avanzati acceleratori di particelle oggi disponibili.
La teoria delle stringhe è una teoria inventata “all’indietro”, visto che gli scienziati ne possedevano delle parti, elaborate in maniera pressoché completa, ma non capivano il significato profondo dei risultati ottenuti. Dopo una prima formula, scoperta nel 1968, che descriveva come le stringhe non influissero l’una sull’altra, negli anni Settanta e nei primi anni Ottanta la teoria vacillava: non descriveva adeguatamente le forze nucleari, pur incorporando la meccanica quantistica. Le stringhe non riuscivano a dare una risposta esauriente: fu così che vennero introdotte le brane, oggetti che si dispiegano in molteplici dimensioni. A metà degli anni Novanta, la teoria fece un ulteriore passo avanti, ma continuavano e continuano a esserci difficoltà nel realizzare una teoria completa ed esauriente. Il lavoro del Large Hadron Collider (LHC) di Ginevra – dove vengono accelerati e fatti collidere protoni a velocità prossime a quella della luce – potrebbe dire se la teoria delle stringhe sia sulla buona strada, grazie all’eventuale scoperta di molte particelle, tra le quali il cosiddetto bosone di Higgs.
L’autore mostra tutta la sua abilità nelle metafore utilizzate per spiegare i passaggi più complessi: la sovrapposizione di due rimi differenti in Fantasia-Improvviso di Chopin diventa la metafora per descrivere la meccanica quantistica, la caduta durante l’arrampicata in artificiale sulla via Cryogenics diventa utile per descrivere la caduta all’interno di un buco nero, la civiltà romana è a fondamento della nostra civiltà esattamente come la teoria delle stringhe è alla base del mondo che conosciamo e la distanza che ci separa dai Romani in termini temporali è la stessa che ci separa dal controllo sperimentale della teoria in termini di energia, il valzer è utile per spiegare la dualità di stringa e le cordate di scalatori forniscono una buona analogia per il bosone di Higgs.
COMMENTO:
Un libro interessante, per quanto molto complesso: nonostante la buona volontà dell’autore, nonostante le sue intuizioni e le sue metafore, la teoria delle stringhe resta comunque una teoria complessa, con l’elevato numero di dimensioni, le D-brane, la dualità di stringa e tutto il resto. Per questo motivo a volte è un po’ complesso: diciamo che una lettura superficiale non aiuta a cogliere in pieno quanto descritto, oltre ad avere una buona concentrazione, bisogna sempre tenere a portata di mano carta e penna…
TRAMA:
«È stata una vita straordinaria, la sua. Nato in una foresta pluviale nella parte più a sud del globo terrestre, Ernest Rutherford era, detto molto semplicemente, un genio. Ha cambiato per sempre il modo in cui vediamo il mondo e noi stessi. È stato il primo a mostrare che gli elementi non sono immutabili: possono trasformarsi in altri elementi, naturalmente, secondo quel processo per il quale usiamo le parole “decadimento radioattivo” e “tempo di dimezzamento”. Ha scoperto la struttura nucleare dell’atomo, dando inizio a un’età “eroica” per la fisica. E ha “fatto l’atomo a pezzi”. Nel 1932 lui e i suoi “ragazzi” furono i primi a farlo, o, più precisamente, furono i primi a frantumare il nucleo dell’atomo e a svelare e liberare forze mai neppure immaginate.»
Grazie ad una borsa di studio istituita nel 1851, l’anno dell’Expo londinese, Rutherford – nato il 30 agosto del 1871 in Nuova Zelanda – ottenne, nel 1895, di continuare i suoi studi in Inghilterra. Collaborando con Thomson, si occupò del passaggio di elettricità nei gas. Ovunque gli scienziati stavano trovando, o comunque cercando, gli esperimenti e le teorie matematiche giuste per descrivere e determinare un mondo fino a quel momento inaccessibile all’occhio umano e ai microscopi. Thomson aveva ideato un modello di atomo, il più accreditato durante il primo decennio del XX secolo, ma nuovi esperimenti sembrarono suggerire che l’atomo consistesse principalmente di spazio vuoto.
A Rutherford fu offerta una cattedra di fisica sperimentale a Montreal: qui il fisico avrebbe avuto una posizione di responsabilità e avrebbe potuto dedicare più tempo alla ricerca. Collaborando con Soddy, assistente nel dipartimento di chimica, riuscirono a provare l’ipotesi della disintegrazione atomica come spiegazione della radioattività, dicendo cose mai dette prima, ma l’isolamento coloniale di Montreal rendeva più difficile accettare la rivoluzione di Rutherford a molti. Ottenne il premio Nobel nel 1908, «per le sue ricerche relative alla disintegrazione degli elementi e alla chimica delle sostanze radioattive».
Il 24 maggio del 1907, ebbe finalmente l’occasione di tornare in Europa in via definitiva: a Machester, il laboratorio più importante in Inghilterra dopo il Cavendish, dove ebbe in eredità un team di laboratorio invidiabile.
Rutherford puntava a guardare all’interno dell’atomo, del quale si conoscevano solo gli elettroni, per la cui scoperta era stato insignito del Nobel Thomson nel 1906. All’inizio di dicembre del 1910, Rutherford aveva chiara in mente l’immagine dell’atomo e di quello che nel 1913 battezzò nucleo: intuì che, in proporzione, il nucleo nell’atomo era come una capocchia di spillo al centro della cattedrale di St. Paul. Rutherford espose i suoi risultati in un articolo il 7 marzo del 1911. Il modello fu accolto come uno dei tanti, ma non convinse: appariva instabile e solo Bohr, dopo qualche mese, mostrò come potesse essere stabile. Il modello di Rutherford-Bohr, frutto di esperimenti ispirati e teorie geniali, rappresentava allo stesso tempo una fine e un inizio: l’inizio della fine della fisica da bancone di Rutherford, quella fatta con ceralacca e cordini. La fisica classica, su cui si poteva letteralmente mettere le mani, stava lasciando il passo alle lavagne; i nuovi esperimenti, tesi a “entrare” nel nucleo, avrebbero richiesto macchine gigantesche in grado di accelerare e manipolare le forze e i corpi descritti e dominati per primi da Isaac Newton, Michael Faraday, J.J. Thomson e dallo stesso Rutherford.
La prima guerra mondiale toccò pesantemente i giovani impegnati nel laboratorio di Rutherford: chi morì in azione, chi rimase ferito, chi, come Chadwick venne internato in un campo di prigionia tedesco. Rutherford invece sviluppò ciò che ora chiamiamo sonar.
Nel marzo del 1919, Thomson abbandonò la direzione del Cavendish e Rutherford ottenne il suo posto.
Nel 1920, Rutherford chiamò protone la particella che usciva dal bombardamento dei nuclei di azoto con le particelle alfa.
Nel frattempo, si era aperta una grande competizione internazionale per frantumare l’atomo e farlo esplodere. Erano impegnati: il laboratorio del Cavendish, la Carnegie Institution di Washington, la University of California, l’Institute of Technology di Pasadena e il Kaiser Wilhelm Institute di Berlino.
Il 1932 fu l’anno dei trionfi per il team di Rutherford: Chadwick, scoprì il neutrone e Walton e Cockcroft videro per la prima volta l’atomo fatto a pezzi, con i nuclei di litio, di massa 7, colpiti da un protone, di massa 1, che si disintegravano in due particelle alfa (nuclei di elio), di massa 4. L’atomo di litio era stato spezzato. Nella violenza dell’evento una parte della massa – 0,02 unità di peso atomico – era stata trasformata in energia. Numericamente si trattava della quantità prevista dalla formula E = mc2. L’energia prodotta era uguale alla massa moltiplicata per la velocità della luce al quadrato. Era la prima prova sperimentale della teoria della relatività di Albert Einstein del 1905.
L’ascesa al potere di Hitler aveva indotto alla fuga millecinquecento scienziati tedeschi, epurati dalle università e dai laboratori: Rutherford spese parecchie energie per trovare un lavoro agli studiosi tedeschi, che lui aveva ribattezzato “gli studiosi erranti”.
Dopo le vittorie conseguite, Rutherford cominciò ad allontanarsi dal Cavendish, prendendosi lunghe pause per stare con i nipoti (avuti dall’unica figlia, morta nel 1930 dando alla luce il quarto figlio): era chiaro che il suo mondo stava cambiando.
Morì il 19 ottobre del 1937, dopo una breve agonia in seguito a una caduta. Le ceneri di Rutherford riposano nell’abbazia di Westminster, vicino alla tomba di sir Isaac Newton.
COMMENTO:
Leggendo il libro, si ha a volte l’impressione di sentir tuonare la voce di Rutherford, nei numerosi aneddoti che lo vedono come protagonista, che ci guidano alla scoperta del mondo subatomico. Grande uomo, grande personaggio, di un’intelligenza eccezionale e vivace, è stato anche un grande maestro, perché numerosi furono i suoi collaboratori che vinsero il premio Nobel: Frederick Soddy (chimica, 1921), Niels Bohr (fisica, 1922), Francis William Aston (chimica, 1922), Paul Dirac (fisica, 1933), James Chadwick (fisica, 1935), Georg von Hevesy (chimica, 1943), Otto Hahn (chimica, 1944), Edward Appleton (fisica, 1947), Patrick Blackett (fisica, 1948), John Cockcroft ed Ernest Walton (fisica, 1951), Pyotr Leonidovich Kapitsa (fisica, 1978).
Questo libro ci racconta la sua vicenda personale, le vicende di questi giovani studiosi e, soprattutto, il cammino della fisica nei primi anni del XX secolo, quando è passata da attività da bancone, con semplici esperimenti realizzabili in piccoli laboratori, agli esperimenti con gli acceleratori di particelle.
Il libro è semplice e coinvolgente e chiunque può affrontarne la lettura, pur non avendo conoscenze specifiche.
TRAMA:
Nel diciottesimo secolo, la fisica, che riguardava solo i fenomeni meccanici, era analizzata solo dal punto di vista matematico. Più avanti, il calore e l’elettricità vennero spiegati con l’esistenza di fluidi imponderabili, ma si trattava di speculazioni qualitative, separate dalla scienza esatta ovvero dalla meccanica, nonostante i diversi tentativi di trattazioni matematiche. Oersted (1820) e Faraday (1831) riuscirono a collegare, con i loro esperimenti, le forze elettriche e quelle magnetiche; Joule stabilì l’equivalenza tra calore e lavoro meccanico e nel 1847 Helmholtz trattò i fenomeni di meccanica, calore, luce, elettricità e magnetismo come differenti manifestazioni dell’energia. Il modo in cui i problemi fisici della luce, del calore e dell’elettricità venivano trattati era tale da consentirne un’analisi matematica e ciò favorì molto l’unificazione della fisica. Ebbero particolare importanza gli esperimenti di Joule: mentre i fisici del diciottesimo secolo avevano considerato i processi meccanici e quelli non meccanici come processi relativi a differenti sistemi fisici, la dimostrazione dell’equivalenza tra lavoro meccanico e calore fatta da Joule negli anni Quaranta dell’Ottocento consentì, insieme alla legge della conservazione dell’energia, l’unificazione dei processi termici e meccanici. E così negli anni Cinquanta e Sessanta Thomson e W.J. Macquorn Rankine elaborarono un nuovo modello della teoria fisica in cui il concetto fondamentale era quello di energia, tentando di rendere più chiara la base matematica e fisica del principio di conservazione dell’energia.
Il concetto di campo emerse intorno al 1850, nella fisica britannica, quando Thomson e Maxwell formularono le teorie dell’elettricità e del magnetismo. La concezione meccanicistica della natura ricevette un ulteriore supporto negli anni Cinquanta e Sessanta con lo sviluppo della teoria cinetica dei gas elaborata da Clausius e Maxwell, nella quale il moto delle particelle era descritto come fenomeno meccanico. I dubbi sorti dopo questa spiegazione indussero Maxwell a introdurre il paradosso del «demone», per dimostrare che le interpretazioni molecolari dovevano basarsi su un’analisi statistica del moto di un immenso numero di molecole.
Con l’enunciazione dell’equivalenza tra massa ed energia e l’abbandono di spazio e tempo assoluti, la teoria della relatività di Einstein segna una «rivoluzione» nella storia della fisica: per quanto l’accento che si pone generalmente sulla discontinuità tra fisica classica e moderna sia appropriato quando serve a distinguere le assunzioni filosofiche della fisica sette-ottocentesca dalle dottrine relativistiche e indeterministiche della fisica del nostro secolo, e a distinguere una fisica prima e una fisica dopo lo sviluppo della meccanica quantistica negli anni Venti, questa frattura è esagerata e trascura, in un modo che risulta alla fine fuorviante, la continuità di idee che pur esiste tra il periodo classico e il periodo moderno.
COMMENTO:
Una storia della fisica approfondita ed interessante, che può essere affrontata con le conoscenze che si sono acquisite con la scuola superiore. Il linguaggio non rende la lettura sempre agevole, ma con un po’ di concentrazione ed attenzione si può capire ogni cosa.
TRAMA:
Dall’introduzione:
Le vicende in cui ci imbatteremo hanno a che fare con la religione, l’amore e l’imbroglio non meno che con la scienza oggettiva e la tecnologia. Ci faranno spaziare dalle strade di Amburgo durante un bombardamento della seconda guerra mondiale alla mente di Alan Turing, geniale inventore del computer, perseguitato proprio dalle autorità del paese che aveva salvato; da Michael Faraday, nato nei bassifondi e tenuto in scarsa considerazione dai suoi contemporanei a causa della sua fede religiosa (grazie alla quale, però, fu il primo a vedere le forze elettriche intrecciarsi invisibili nello spazio), a un pittore, Samuel Morse, che si candidò entusiasta a sindaco di New York con un programma di persecuzioni contro i cattolici, e che apprese più di quanto non fosse mai disposto ad ammettere sul funzionamento dei telegrafi da un pioniere il quale non riusciva a credere che qualcuno volesse brevettare un’idea così ovvia.
Incontreremo un esuberante immigrato in America poco più che ventenne, Alexander Bell, deciso a tutto per conquistare l’amore di una studentessa adolescente sorda, e il quarantenne Robert Watson-Watt, che invece cerca disperatamente di sfuggire a un matrimonio noioso e al tedio della città di Slough degli anni 1930. E ancora Otto Loewi, che si sveglia la notte prima di Pasqua rendendosi conto di aver risolto il problema di come l’elettricità opera nel nostro corpo, ma che il mattino dopo, disperato, non riesce a leggere gli appunti scarabocchiati che ha buttato giù accanto al letto durante la notte; e il ragazzo scozzese di campagna, James Clerk Maxwell, che per anni alla scuola elementare viene trattato da tonto dai compagni prepotenti, eppure diviene il massimo scienziato teorico del XIX secolo, capace di concepire la struttura intima dell’universo in modo che gli scienziati delle epoche successive riconosceranno profondamente vero. Tutte queste vicende mettono in luce come la forza immensa dell’elettricità fu gradualmente svelata, come fu sottratta al suo regno occulto, e che cosa noi, esseri umani imperfetti, abbiamo fatto dei poteri accresciuti che essa ci ha conferito.
COMMENTO:
Una delle caratteristiche principali del libro è la sua semplicità: i passaggi più complessi sono lasciati alle note in fondo al testo, che spiegano il funzionamento delle macchine descritte, mentre il resto della trattazione è alla portata di tutti.
La storia degli uomini che hanno reso possibili le comodità del mondo attuale è coinvolgente: in alcuni tratti della storia del radar, ad esempio, si ha quasi l'impressione di leggere un romanzo di Ken Follett, vista la suspense! E poi le vicende di questi uomini, si tratti delle slealtà di Morse o della solitudine di Turing, rendono tutto il mondo della fisica più vicino alla nostra quotidianità.
TRAMA:
George Johnson riflette sugli sviluppi della fisica negli ultimi decenni. Nel XXI secolo la scienza non è più trattata in un laboratorio da un singolo scienziato, ma è ormai industrializzata. Gli esperimenti occupano numerose colonne sui giornali, generano una tale quantità di dati che sono necessari supercomputer per analizzarli e sono svolti da équipe composte da parecchi scienziati. Ma fino a non molto tempo fa la scienza più rivoluzionaria arrivava da singole paia di mani, da menti individuali che sfidavano l’ignoto. I grandi esperimenti che segnano i confini del nostro sapere sono stati quasi sempre condotti da uno o due scienziati, e di solito sul piano di un tavolo. I calcoli, se servivano, erano svolti su carta o, più tardi, su un regolo calcolatore.
Sentendo il bisogno di ripartire dalle fondamenta, Johnson dedica questo libro a dieci esperimenti.
COMMENTO:
Molto scorrevole e semplice, il libro è estremamente godibile pur non avendo preparazione in materia, dato che l’autore spiega con estrema chiarezza gli esperimenti, oltre al contesto nel quale sono nati. I protagonisti degli esperimenti sono descritti nelle loro ambizioni e nella loro genialità, nei punti di forza e nelle debolezze, anche se non sempre sono presentati i particolari delle loro biografie, come lo stesso autore ci spiega nell’introduzione. La scienza che emerge da questo libro ha un carattere individuale ed è potuta progredire proprio grazie alla grandezza di questi singoli scienziati, che con la loro genialità hanno permesso il progresso degli ambiti in cui hanno lavorato.
Proprio per il suo carattere estremamente semplice, il libro può considerarsi un assaggio di scienza: per le persone più preparate può apparire quasi scarno e povero di approfondimenti, ma per gli studenti delle superiori può costituire un invito all’approfondimento, possibile anche grazie alla ricca bibliografia fornita dall’autore.
© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy