Daniela Molinari

URL del sito web: http://www.amolamatematica.it
Giovedì, 01 Agosto 2013 07:59

I problemi del millennio

TRAMA:
Il 24 maggio 2000, durante un Convegno a Parigi, il Clay Mathematics Institute annuncia la messa in palio di sette premi da un milione di dollari, per la soluzione di altrettanti problemi di matematica rimasti irrisolti e giudicati da una commissione internazionale di matematici i sette più difficili e importanti fra quelli ancora da sciogliere. “I problemi del Millennio potrebbero non dare l’idea di dove sia diretta la matematica, ma ci offrono un’eccellente istantanea che mostra dove si trovino, oggi, le sue frontiere”.
L’IPOTESI DI RIEMANN – Essa costituisce l’ultimo problema rimasto irrisolto della lista di Hilbert del 1900. Le sue origini risalgono alla distribuzione dei numeri primi nella successione dei numeri naturali. Nel 1740 Eulero introdusse una funzione denominata con la lettera greca “zeta” (z): Riemann usò tale funzione per indagare il modello di distribuzione dei numeri primi e il suo lavoro fornì un solido legame con la geometria del piano complesso. L’ipotesi di Riemann ha implicazioni importanti per la nostra conoscenza dei numeri primi, ma anche per la sicurezza di Internet. Per lungo tempo si è nutrita la speranza che Riemann avesse lasciato un indizio sepolto da qualche parte fra i suoi appunti, ma inutilmente: non potremo mai sapere con sicurezza in che modo arrivò alle sue conclusioni. La maggior parte dei matematici ritiene che la congettura sia vera.
LA TEORIA DI YANG-MILLS E L’IPOTESI DEL GAP DI MASSA – Il secondo problema del Millennio è un enigma specifico che i matematici dovranno risolvere per dimostrarsi all’altezza della sfida lanciata loro dai fisici. La teoria di Yang-Mills (anni Cinquanta) è un primo passo verso la Grande Teoria Unificata. Nella QFT (Quantum Field Theory), la matematica coinvolge il concetto di simmetria: Yang e Mills lavorarono in questa direzione. Nessuno finora è stato in grado di risolvere le loro equazioni: i fisici le usano per formulare regole con le quali calcolare vari numeri chiave in un modo “approssimato”. “La sua soluzione segnerebbe l’inizio di un’area della matematica nuova e fondamentale, caratterizzata da profonde e importanti implicazioni con la nostra attuale conoscenza dell’universo”.
IL PROBLEMA P VERSUS NP – Per l’autore, è il problema che ha maggiori probabilità di essere risolto da un “dilettante sconosciuto”: riguarda l’efficienza che i computer possono raggiungere nell’eseguire certi tipi di compito. Riferendosi al problema del commesso viaggiatore, i matematici puri cercarono di determinare quanto efficientemente un computer potesse eseguire un particolare compito. Per distinguere i processi, i matematici proposero una classificazione dei problemi: tra quelli risolvibili in un tempo polinomiale e quelli risolvibili in un tempo esponenziale, inserirono i problemi risolvibili in un tempo polinomiale non deterministico, o per brevità NP. 
LE EQUAZIONI DI NAVIER-STOKES – Basandosi sul lavoro di Bernoulli, Eulero formulò una serie di equazioni la cui soluzione descrive il moto di un fluido non viscoso. Nel 1882 Navier introdusse nelle equazioni di Eulero una correzione e, qualche anno dopo, Stokes ne ottenne una derivazione corretta. Grazie al lavoro di Navier e Stokes, alla fine del diciannovesimo secolo sembrava che i matematici fossero sul punto di elaborare una teoria completa della fluidodinamica. Ma nessuno, finora, è riuscito a trovare una formula che risolva le equazioni di Navier-Stokes: non solo, nessuno è riuscito a dimostrare che tale soluzione esista. “I progressi compiuti verso una soluzione delle equazioni di Navier-Stokes sono stati finora talmente piccoli che il Clay Institute assegnerà il premio da un milione di dollari al risolutore di una qualsiasi delle varianti del problema.”.
LA CONGETTURA DI POINCARÉ –La congettura emerge per caso, da un errore compiuto all’inizio dell’indagine di Poincaré nella topologia. Nei primi anni del ventesimo secolo, Poincaré e altri matematici si accinsero a classificare gli analoghi delle superfici a più dimensioni, che chiamarono “varietà”. La congettura è stata dimostrata nel 1960 per varietà da cinque dimensioni in su (Smale) e nel 1981 è stata dimostrata per varietà quadridimensionali (Freedman). Manca la dimostrazione per le varietà tridimensionali. [Questo problema è stato probabilmente risolto dal russo Grigori Perelman, ma è presente una seconda dimostrazione, dell’inglese Martin Dunwoody. Non si può stabilire chi dei due abbia diritto al premio, visto che per il Clay Institute devono passare due anni dall’annuncio della dimostrazione.]
LA CONGETTURA DI BIRCH E SWINNERTON-DYER – Tale congettura riguarda le “curve ellittiche”. Una sua dimostrazione avrebbe ripercussioni su tutta la matematica moderna. Prima del 1994 non era nemmeno sicuro che la congettura avesse davvero senso.
LA CONGETTURA DI HODGE – Con ogni probabilità è il problema meno accessibile, poiché si tratta di una questione altamente tecnica e “non c’è nemmeno un reale consenso riguardo a ciò che essa effettivamente sostiene”. Una dimostrazione della congettura stabilirebbe un collegamento fondamentale fra le tre discipline della geometria algebrica, dell’analisi e della topologia. Hodge espose la sua congettura nel discorso pronunciato all’International Congress of Mathematicians, tenutosi nel 1950 in Inghilterra. Attualmente, non esiste alcuna prova che indichi la correttezza dell’intuizione di Hodge.
 
COMMENTO:
Libro interessante, anche se complesso. Uno sguardo sui problemi attuali della matematica, ma non solo: l’autore offre anche ampi panorami sulla storia della matematica, sulla sua evoluzione, su ciò che ha generato i problemi del millennio, infatti non ha come obiettivo la descrizione dettagliata dei problemi: “Il mio obiettivo consiste nel collocare ciascun problema in un suo scenario, descrivere come emerse, spiegare che cosa lo renda particolarmente difficile, e darvi un’idea del perché i matematici lo considerino tanto importante”.
Giovedì, 01 Agosto 2013 07:58

Il pallino della matematica

TRAMA:
Attraverso un attento esame degli animali e dei bambini, l’autore ci convince innanzi tutto che le nostre competenze matematiche hanno radici biologiche. Nel mondo animale, l’aritmetica è molto diffusa, forse anche grazie al vantaggio selettivo che essa procura, ma i numeri percepiti dagli animali non sono quantità esatte. Gli uomini sono dotati di una rappresentazione mentale delle quantità molto simile a quella che ha un animale. Nel corso degli anni Ottanta, in bambini di meno di sei mesi e persino in neonati di qualche giorno, sono state riscontrate autentiche capacità numeriche: neonati di tre o quattro giorni sono in grado di distinguere il 2 dal 3, e sanno che 1+1=2. L’assenza di un linguaggio non impedisce i calcoli numerici elementari, anche se le abilità del bambino sono limitate agli aspetti più semplici dell’aritmetica. La sola nozione aritmetica di cui il bambino sembra essere privo è forse la relazione di ordine, ma in ogni caso è un matematico migliore di quanto immaginassimo.
Come ha fatto l’uomo a superare lo stadio dell’approssimazione dei numeri? Pare che la numerazione più evoluta passi attraverso il conto delle diverse parti del corpo, per arrivare alla notazione posizionale in base 10, che ha semplificato i calcoli, l’apprendimento, la lettura, la scrittura… Nonostante la semplicità del nostro sistema di numerazione, però, un numero elevato di persone commette errori nei calcoli più elementari. Eppure a tre anni e mezzo un bambino si destreggia già nell’arte del contare e tra i quattro e i sette anni, non solo capisce i calcoli che fa, ma li sceglie molto accuratamente. Purtroppo, cominciando a frequentare la scuola, si passa a un’aritmetica imparata a memoria e nascono le prime difficoltà: le tabelle della moltiplicazione e dell’addizione, a causa della loro struttura, non sono certo facili da imparare e fatichiamo a conservarle in compartimenti separati. Forse sarebbe utile modificare i metodi di insegnamento, interrogandoci sull’opportunità di inculcare gli algoritmi di calcolo a viva forza nella mente dei bambini. L’autore sostiene che un uso ragionato della calcolatrice potrebbe liberare il bambino dagli aspetti fastidiosi e meccanici del calcolo, permettendogli di concentrarsi sul significato e aiutandolo a sviluppare il suo senso naturale di approssimazione. 
Cosa distingue Einstein, o comunque un uomo dalle prodigiose capacità di calcolo, da un comune mortale? Il genio è un dono innato, legato a un’organizzazione cerebrale diversa o è il risultato di anni di allenamento all’aritmetica? L’ipotesi di un legame diretto tra la misura del cervello e l’intelligenza è stata rifiutata, come pure quella di una superiorità maschile. Numerosi ricercatori si sono sforzati di trasformare, con un intenso allenamento, studenti normali in prodigi di memoria o di calcolo e i risultati dimostrano che la passione può generare il talento. 
Seguendo i numeri fin dentro la corteccia cerebrale, attraverso la neuropsicologia conoscitiva e le nuove immagini del cervello in azione, l’autore spiega che l’idea che il pensiero possa essere localizzato in un piccolo numero di regioni cerebrali è stata abbandonata. Infatti, ciascuna operazione aritmetica fa entrare in attività una rete cerebrale estesa e la logica e il calcolo sono proprietà accessibili soltanto a cervelli opportunamente educati. La difficoltà della matematica è dovuta, secondo l’autore, all’architettura del nostro cervello, inadatta a lunghe catene di ragionamenti simbolici.
 
COMMENTO:
Lettura interessante sia per gli insegnanti, che possono trovare interessanti suggerimenti per far odiare un po’ meno la matematica agli alunni, sia per gli alunni, che hanno la possibilità di convincersi che il talento per la matematica non è unicamente un dono innato.
Giovedì, 01 Agosto 2013 07:56

Professione matematico

TRAMA:
Dodici interviste ad altrettanti matematici italiani. La prima cosa sorprendente è che la maggior parte degli intervistati non ha scoperto molto presto la propria passione per la matematica, alcuni sono addirittura laureati in fisica. È unanime l’idea che il computer non abbia sostanzialmente cambiato il modo di fare ricerca. Il problema dei cervelli in fuga, invece, è in realtà segnalato come mancanza di ricchezza per l’Italia: i continui viaggi indicano un importante e vitale scambio di idee, purtroppo però nessuno straniero si sente invogliato a venire in Italia e questa è la vera povertà. Unanime è la critica nei confronti della riforma universitaria, unanime l’elenco delle qualità necessarie per diventare matematici eccellenti: l’interesse, la fantasia, la disciplina, lo studio, l’importanza delle buone guide… ma attualmente sembra tutto più difficile, visto che lo studente medio mostra una difficoltà di concentrazione sempre maggiore e mancano i nessi logici, la capacità di ragionare.
I matematici intervistati sono:
GIUSEPPE DA PRATO: laureato in fisica, ritiene che la stessa sia un utile strumento per capire i problemi concreti da cui nascono certe questioni di carattere matematico.
CORRADO DE CONCINI: presidente dell’Indam, agenzia di finanziamento della ricerca matematica, ritiene sia importante comunicare il fascino della matematica.
MICHELE EMMER: figlio di un regista, si occupa di superfici minime, ma anche di cinema.
FRANCO FAGNOLA: si occupa dello sviluppo del sesto problema di Hilbert.
ENRICO GIUSTI: ha lavorato con De Giorgi e Bombieri, ma oggi si occupa molto di divulgazione matematica. A lui si deve la fondazione del primo museo dedicato interamente alla matematica: i Giardini di Archimede.
GIORGIO ISRAEL: contesta la matematizzazione della sociologia e dell’economia, perché solo in fisica il processo è ormai collaudato e in biologia sta già dimostrando la sua efficacia. Esiste un limite nella rappresentazione matematica dei fenomeni.
PIERGIORGIO ODIFREDDI: logico, si occupa da alcuni anni della divulgazione della matematica. Esprime la sua preoccupazione per la crescente superficialità della società.
MARIO PRIMICERIO: matematico applicato, si è avvicinato alla scienza grazie alla propria curiosità. Parla diffusamente delle possibili collaborazioni, da lui incentivate, fra università e industria.
ALFIO QUARTERONI: espone molti aspetti curiosi delle applicazioni matematiche, come ad esempio il lavoro per il team Alinghi e sottolinea l’importanza del mettersi in discussione e del cambiare ogni tanto la propria attività, per mettersi alla prova.
GIUSEPPE TOMASSINI: si occupa di geometria superiore, ma in realtà la distinzione tra i vari ambiti non ha più molta importanza: è necessario trattare i problemi nella prospettiva più ampia possibile. 
CARLO TRAVERSO: parla non solo dell’algebra computazionale, di cosa sia e delle sue applicazioni, ma anche delle competenze richieste per essere ammessi a un corso di dottorato.
EDOARDO VESENTINI: sottolinea che fare ricerca matematica significa “rompersi la testa” su un problema e paragona la matematica a una droga.
 
COMMENTO:
Dalle parole degli studiosi di matematica emerge una grande passione per l’oggetto del loro studio e forse è proprio questo che rende la lettura del libro così piacevole. Ma questo non è certamente l’unico lato positivo in un libro che si legge d’un fiato. 
Le risposte inerenti le prospettive di lavoro per un matematico aprono davanti ai nostri occhi l’immagine di un mondo sconosciuto, poco noto anche a chi ha studiato matematica. Forse perché, come dice Enrico Giusti: la matematica “è un po’ come il nostro scheletro: da fuori non si vede, ma guai se non ci fosse!”.
Giovedì, 01 Agosto 2013 00:00

Matematica senza numeri

TRAMA:
LA TEORIA DEGLI INSIEMI – Con semplici esempi, l’autore presenta le diverse relazioni esistenti fra gli elementi di un insieme: la relazione di equivalenza, che porta alla ripartizione in classi, e la relazione di ordine, che porta all’ordinamento degli elementi. Quando gli insiemi sono due, le relazioni esistenti fra gli elementi dei due insiemi sono le corrispondenze, tra le quali le più interessanti sono quelle biunivoche, utilissime per determinare l’equipotenza degli insiemi infiniti. 
LA LOGICA MATEMATICA – Le proposizioni atomiche, i connettivi logici, le tavole di verità portano al Quinto Postulato di Euclide e alle regole di deduzione. La matematica è induzione o deduzione? Entrambe le cose: “l’induzione è lo strumento attraverso cui si sceglie di procedere in una data direzione di ricerca; la deduzione è lo strumento che si utilizza per ‘sistemare’ le teorie matematiche in una forma che dia il massimo di garanzie sul piano logico”.
GRAMMATICHE E LINGUAGGI – Il calcolatore ha prodotto un cambiamento nel lavoro dei matematici, ma per comunicare con il computer è necessario costruire linguaggi ad hoc. I linguaggi artificiali sono semplici e poveri, del tutto privi di ambiguità, progettati a tavolino e disciplinati da rigide regole stabilite a priori. A partire da questi presupposti, l’autore presenta alcuni esempi di linguaggio: le grammatiche a stati finiti con gli automi corrispondenti e le grammatiche libere dal contesto con gli automi a pile.
 
COMMENTO:
La trattazione è chiara e lineare: il lettore è aiutato dalle ricapitolazioni che sono presenti alla fine di ogni paragrafo, per questo anche se l’argomento non è banale, risulta di facile comprensione anche per chi non abbia preparazione matematica.
Giovedì, 01 Agosto 2013 07:52

La matematica da Pitagora a Newton

TRAMA:
I NUMERI – L’introduzione delle cifre arabe è un fatto relativamente recente, ma ha cambiato completamente il nostro modo di operare con la matematica: basti pensare alla difficoltà di svolgere anche la più semplice operazione aritmetica con le cifre romane. Le cifre arabe non si affermarono senza incontrare ostacoli: basti pensare che ci vollero due secoli abbondanti perché la nuova numerazione si diffondesse.
App. 1: La numerazione degli antichi romani
App. 2: La regola turca
App. 3: La regola di Pitagora per calcolare il quadrato di un numero
App. 4: Applichiamo la regola di Pitagora per misurare gli spazi percorsi da un sasso che lasciamo cadere dall’alto
App. 5: Numerazioni in basi diverse dal dieci
App. 6: La numerazione “in base due”, ovvero: bastano le due cifre 0 e 1, per scrivere un numero qualunque
I TRIANGOLI – La geometria è stata la prima vera scienza costruita dall’uomo. I greci la portarono ad un ottimo livello, basti pensare alla misurazione della piramide di Cheope da parte di Talete, e alla dimostrazione del teorema di Pitagora.
App. 7: Non credere a quello che vedi! Ovvero: la moltiplicazione dei quadrati
LE MISURE – In geometria, conta la misura. Per tecnici e scienziati, è possibile misurare qualsiasi cosa, ma non per il matematico. Basta pensare alla diagonale del quadrato di lato 1 m, o alla lunghezza della circonferenza. Per determinare, con precisione, il rapporto tra la misura della circonferenza e quella del suo diametro, fu Archimede ad avere l’idea geniale, introducendo il metodo infinitesimale, riscoperto ben milleottocentocinquanta anni dopo.
App. 8: Nessuna frazione ha per quadrato due
App. 9: La scodella di Luca Valerio
App. 10: Un’area misurata da Galileo con la bilancia, da Torricelli con la mente 
I SIMBOLI E I NUOVI NUMERI – La nascita dell’algebra porta all’introduzione di nuovi simboli, le lettere variabili, e nuovi numeri, come i numeri negativi, considerati “assurdi” per molto tempo, o gli irrazionali.
App. 11: Calcolo letterale: simboli e regole
App. 12: “Pensa un numero…” “L’ho pensato”
App. 13: Una porta mezza-chiusa non è una porta mezza-aperta
App. 14: Calcolo di (a+b)^3 con l’algebra geometrica
App. 15: uno è uguale a due, ovvero l’operazione proibita
LA GEOMETRIA DIVENTA ALGEBRA – Con i diagrammi cartesiani, ormai diffusi e usati in ogni ambito della nostra società, geometria e algebra si incontrano. Si tratta di un’enorme scoperta, tanto da poter essere considerata “uno dei principali punti di partenza di tutta la scienza moderna”.
App. 16: La convenzione dei segni nello spazio
App. 17: Le equazioni della parabola e della iperbole equilatera
FUNZIONI, DERIVATE, INTEGRALI – Leibniz e Newton arrivarono alle stesse idee del calcolo infinitesimale in forma diversa, ma nello stesso momento: i tempi erano ormai maturi. Con il calcolo differenziale, si può determinare la velocità istantanea e risolvere le equazioni del moto. “Questa è l’ultima grande idea semplice e geniale della nostra storia”.
App. 18: Alcuni simboli che si impiegano per la derivata e l’integrale (definito)
App. 19: Risposte a dubbi
 
COMMENTO:
“Il libro è deliberatamente breve e facile, in quanto si rivolge a lettori quasi privi di basi matematiche, e in particolare ai lettori più giovani.” Quanto viene espresso nell’introduzione di Giorgio Israel basta per commentare questa veloce esposizione matematica. Ma non bisogna dimenticare che, per quanto la trattazione sia semplice, “Per comprendere la matematica occorre far funzionare il cervello, e questo costa sempre un certo sforzo”. È l’autore stesso a metterci in guardia nella sua introduzione.
Giovedì, 01 Agosto 2013 07:51

Una storia ingarbugliata

TRAMA:
“Questa storia è stata pubblicata a puntate nel The Monthly racket, a partire dall’aprile del 1880.” Le puntate sono dieci, dieci garbugli, o capitoli, e contengono quesiti di natura algebrica o logica e sono stati inseriti “per divertire, ed eventualmente per istruire, i gentili lettori della rivista”. Si può procedere nella lettura dei garbugli ordinatamente, oppure in ordine sparso, visto che non sono collegati gli uni agli altri, nel senso che sono indipendenti, anche se alcuni personaggi sono protagonisti di più garbugli. Il lettore è invitato a risolvere i garbugli per proprio conto, ma in ogni caso in appendice sono riportate le soluzioni.
 
COMMENTO:
Il testo è stimolante, visto l’invito implicito rivolto al lettore ad impegnarsi a risolvere i quesiti. Per questo motivo, è necessario prestare la massima attenzione durante la lettura, per poter cogliere tutti gli indizi forniti dall’autore. 
Giovedì, 01 Agosto 2013 07:50

I pantaloni di Pitagora

TRAMA:
Il VI secolo a.C. fu un secolo prodigioso per l’Occidente, perché avvenne il passaggio da una spiegazione mitologica dell’universo alla ricerca di una spiegazione scientifica. Per Pitagora, questa spiegazione era data dai numeri, Tutto è numero. Cominciò così l’emarginazione delle donne: la matematica era un’attività essenzialmente maschile, le donne dovevano dimenticare la loro natura femminile per far parte delle comunità pitagoriche. 
Con l’avvento dell’era cristiana, le donne furono definitivamente estromesse dalla conoscenza: nel Tardo Medioevo, potevano legittimare le loro parole solo sostenendo che la fonte della loro creatività era Dio stesso. Nel Rinascimento, il clima della cultura europea cominciò a cambiare e le donne poterono permettersi di sfidare l’egemonia maschile in campo intellettuale: nell’astronomia vennero tollerate nella misura in cui aiutavano gli uomini, come Sophie Brahe e Maria Winkelmann. Con la sconfitta della magia, dopo il Concilio di Trento, la natura rimase dominio dell’uomo. La filosofia naturale di Newton diventò l’emblema di un periodo storico nel quale le donne non avevano che un ruolo marginale. Madame de Chatelet non era considerata, Laura Bassi nutriva una propria indipendenza di pensiero, ma non diventò mai una docente a tutti gli effetti, Maria Gaetana Agnesi non poté ritirarsi dalla vita mondana per dedicarsi alla fisica.
Nel 1800, la scienza proseguì con un’escalation ormai inarrestabile: Carnot, Faraday, Maxwell, … mentre le donne erano ai margini. Comparirono le prime università femminili, ma non furono che un modo per rinchiudere le donne nel loro mondo. Harriet Brooks ne è la dimostrazione: dovette scegliere tra insegnamento e famiglia. Maria Sklodowska Curie, invece, riuscì a ottenere un proprio ruolo, ma per tutta la vita fu perseguitata dall’insinuazione che la parte creativa della ricerca fosse stata tutta opera del marito. 
Ancora nel XX secolo, la donna europea non poteva accedere ai livelli superiori dell’istruzione accademica: Emmy Noether diventò presto uno dei più grandi matematici del secolo, ma perse anni preziosi solo per il fatto di essere donna e fu ammessa all’università come “uditrice”; Lise Meitner dovette lavorare alla fisica negli scantinati e alla fine venne ignorata nell’assegnazione del Nobel (venne insignito Hahn, che aveva collaborato con lei).
La discriminazione dei sessi non è più consentita dalla legge, ma continua a prevalere negli ambienti scientifici, come dimostrato dalla vicenda di Chien-Hiung Wu, scienziata cinese delle particelle, esclusa dall’assegnazione del Nobel. 
Anche se la situazione è migliorata dagli anni ’70 ad oggi, la fisica rimane dominio maschile ed è l’ambito della scienza in cui la presenza femminile è più scarsa. La conferma arriva dal fatto che dal giorno della sua istituzione, nel 1901, ad oggi, più di quattrocento uomini hanno vinto il Premio Nobel per la ricerca scientifica, ma solo nove donne hanno avuto questo onore.
 
COMMENTO:
La lettura del testo è scorrevole e coinvolgente. Oltre ad offrire un ottimo excursus nella storia della fisica, l’autrice, ed è questo il fine principale, presenta la situazione della donna, il suo impegno nella ricerca scientifica, la sua vita ai margini. La storia della fisica, la storia fatta dagli uomini, diventa solo uno sfondo sul quale si svolge la lotta quotidiana anche di grandi scienziate, costrette a misurarsi ogni giorno con la discriminazione. 
Presentato in una classe terza delle superiori, il libro ha suscitato notevole interesse, ha fatto nascere nuovi interrogativi, ha stimolato la sete di conoscenza e ha lasciato un segno profondo, soprattutto nel momento in cui è stata presentata la figura di Marie Curie.
Giovedì, 01 Agosto 2013 07:48

Le idee geniali

SCANSIONE DEI CAPITOLI E PERSONAGGI TRATTATI:
 
  1. La genialità alle origini della civiltà: Archimede, Eratostene, Pitagora, Euclide
  2. Genii epocali: Galileo Galilei, Isaac Newton, Albert Einstein
  3. Genii altamente professionali: Carl Friedrich Gauss, Michael Faraday, Amedeo Avogadro, Jean Perrin, I Curie
  4. Genii alle macchine utili: Sadi Carnot e gli altri
  5. Genialità e intuizione: i semplificatori: Jean Baptiste Fourier, Idee geniali di incerta paternità, Genialità nella strumentazione, Evangelista Torricelli, Pierre Vernier, James Watt, August Toepler
  6. Al di là dei classici: Vito Volterra, Enrico Fermi, Max Born, Richard Feynman, John Archibald Wheeler
 
COMMENTO:
Libro interessante e scorrevole. I singoli personaggi sono presentati con gli aneddoti che li caratterizzano, ma anche e soprattutto con le scoperte geniali che li hanno resi indimenticabili. 
È possibile approfondire i singoli temi attraverso alcune pagine nelle quali viene spiegata più in dettaglio la scoperta in questione, oppure scegliere di leggere il libro anche a livello meno impegnativo, limitandosi alle storie delle vite dei numerosi chimici, fisici, matematici, biologi che hanno reso la nostra epoca quello che è.
Giovedì, 01 Agosto 2013 07:44

Il mago dei numeri

TRAMA:
È la storia di Roberto, un ragazzo di dodici anni che odia la matematica, perché la trova noiosa, ma soprattutto perché gli viene insegnata dal prof. Mandibola, un individuo enorme, che non fa altro che mangiare ciambelle e assegnare problemi stupidi. Una notte, Roberto incontra il Mago dei Numeri e, per dodici notti, compirà un viaggio alla scoperta delle meraviglie della matematica: il Mago richiama la necessità della precisione, ma sottolinea anche che i numeri sono semplici. Si parla dello zero, dell'importanza delle potenze: “Eh sì, i numeri sono creature davvero fantastiche. Sai, in fondo di banali non ce ne sono. Ciascuno ha un suo profilo, i suoi segreti. Non si riesce mai a scoprire tutti i loro trucchetti.” E si apre un nuovo universo: i conigli di Fibonacci, il triangolo di Tartaglia con le sue magie nascoste, il calcolo combinatorio, l'importanza e la necessità della dimostrazione... e il tutto si conclude con l'invito, come allievo del Mago dei numeri Teplotaxl, al grande ricevimento nell'Inferno/paradiso dei numeri. Durante questa festa, Roberto conosce tutti i più importanti maghi dei numeri e viene ammesso al rango inferiore degli apprendisti dei numeri, in segno del quale gli viene conferito l'ordine pitagorico di quinta classe.
 
COMMENTO:
Il libro si presta ad una lettura poco impegnata, ma offre un ampio panorama della matematica, che può appassionare anche coloro che la trovano più antipatica. In particolare, può essere apprezzato sia dai ragazzi delle medie, che non hanno una preparazione approfondita, sia dai ragazzi delle superiori, per i quali può sempre essere un bene ritrovare certi contenuti espressi in forma di favola e non esageratamente banalizzati.
 
È possibile visionare il file di power point usato per presentare il libro in una classe delle medie e preparato durante le ore di sostegno ad un ragazzo diversamente abile, che si è notevolmente appassionato alle vicende di Roberto.
Giovedì, 01 Agosto 2013 07:33

Flatlandia

TRAMA:
La vicenda si svolge nel regno di Flatlandia: “Immaginate un vasto foglio di carta su cui delle Linee Rette, dei Triangoli, dei Quadrati, dei Pentagoni, degli Esagoni e altre Figure geometriche, invece di restar ferme al loro posto, si muovano qua e là, liberamente, sulla superficie o dentro di essa, ma senza potersene sollevare e senza potervisi immergere, come delle ombre, insomma – consistenti, però, e dai contorni luminosi.”
La gerarchia sociale è stabilita proprio dal numero di lati: maggiore è il numero di lati, più alto è il ceto sociale al quale si appartiene. Nel caso dei triangoli, la posizione nella gerarchia è data dalla regolarità: gli isosceli con un angolo al vertice estremamente acuto sono i reietti della società, criminali, soldati e operai, i Triangoli Equilateri sono la Classe Rispettabile dei Commercianti, ovvero la Borghesia; poi ci sono i Quadrati e i Pentagoni, ovvero i Gentiluomini o Professionisti, ed infine l’Aristocrazia, dagli Esagoni fino ai Poligonali. Quando i Poligonali diventano quasi indistinguibili dai Circoli, si entra nell’ordine Circolare o Sacerdotale.
La classe più reietta è quella delle donne, visto che non hanno nemmeno un angolo: sono dei segmenti di retta, che hanno la bocca e l’occhio a un estremo. Siccome viste da dietro sono quasi invisibili, sono costrette per Legge a mantenersi sempre in movimento e ad emettere il loro grido di pace in continuazione.
Il Quadrato prosegue nella descrizione di tutte le abitudini del Regno di Flatlandia, finché, in sogno, ha la visione del Regno della Linelandia, ovvero del regno dove c’è una sola dimensione, i cui abitanti sono costretti a muoversi lungo una retta e sono essi stessi segmenti di retta, con due occhi e due bocche agli estremi. 
Resta stupito dalla visione, ma prosegue la sua vita normale. Poi, una sera, mentre sta vegliando con la moglie in attesa del Secondo Millennio, una Sfera irrompe in casa sua. E con la Sfera, il Quadrato può conoscere il Regno della Spacelandia e può rendersi conto dell’esistenza di una Terza Dimensione. Ma questo non gli basta: aspira a questo punto a conoscere il Regno della Quarta Dimensione e poi quello della Quinta e così via. La Sfera, adirata, lo riporta bruscamente a casa.
Il Quadrato non può tenere per sé tutto quello che ha appreso, perciò comincia a parlare in pubblico della Terza Dimensione e del fatto che il Regno della Flatlandia non esaurisce tutto l’Universo. Soprattutto, dopo che in sogno la Sfera gli ha mostrato il Regno della Pointlandia e gli altri regni a più dimensioni. Questo causa la sua carcerazione a vita, per aver tentato di sovvertire l’ordine esistente in Flatlandia.
 
COMMENTO:
La lettura di questo libro è estremamente interessante, sia per chi lo consideri solo come opera matematica, sia per chi lo voglia vedere come una satira degli Stati tuttora esistenti: in fondo, la gerarchia sociale è una realtà anche per noi, nonostante sia stabilita dal censo e non dalla nostra conformazione fisica. Inoltre, chi voglia “predicare” un mondo diverso, ovvero un mondo che va contro l’ordine precostituito, viene messo ai margini, esattamente come succede per il Quadrato.
Il libro è scorrevole e suscita profonde riflessioni. Può essere letto da chiunque, perché non richiede una particolare preparazione di tipo matematico.
Pagina 119 di 123

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy