Daniela Molinari

URL del sito web: http://www.amolamatematica.it
Lunedì, 19 Agosto 2013 21:21

Il sistema di numerazione binario

La storia del sistema di numerazione binario, da Leibniz ai bit.

 

Bibliografia:

Albrecht Beutelspacher, Matematica da tasca, Ponte alle grazie, Milano 2002
Carl B. Boyer, Storia della matematica, Oscar Saggi Mondadori, Cuneo, 1998
Anna Cerasoli, I magnifici dieci, Sperling & Kupfer Editori, 2001
R. Courant – H. Robbins, Che cos’è la matematica?, Universale Bollati Boringhieri, Torino, 1971
Theoni Pappas, Le gioie della matematica, Franco Muzzio Editore, Padova, 1995
Lucio Lombardo Radice, La matematica da Pitagora a Newton, Franco Muzzio Editore, Trento, 2003

Lunedì, 19 Agosto 2013 21:18

Da Aristotele al computer

Liberamente tratto da Le menzogne di Ulisse, di Piergiorgio Odifreddi.

 

Bibliografia:

AA.VV, Logica matematica e logica filosofica, Editrice La scuola, Brescia 1990
Enzensberger Hans Magnus, Gli elisir della scienza, Einaudi, Torino 2004
N. Dodero, P. Barboncini, R. Manfredi, Nuovi lineamenti di matematica, Ghisetti e Corvi Editori, Milano 2006, vol. 1
Odifreddi Piergiorgio, Le menzogne di Ulisse, Longanesi, Milano 2004
Francesco Speranza, Matematica per gli insegnanti di matematica, Zanichelli, Bologna, 1983
Wikipedia, l’enciclopedia libera http://it.wikipedia.org/wiki/Pagina_principale (ho fatto riferimento a questa enciclopedia per le date di nascita e di morte dei singoli logici citati e per alcune notizie riguardo la loro vita)

Lunedì, 19 Agosto 2013 21:14

La teoria degli insiemi nella storia

La storia della teoria degli insiemi: una piccola introduzione, passando dal paradosso del barbiere e giungendo fino agli assiomi di Zermelo-Fraenkel.

 

Bibliografia:

Albrecht Beutelspacher, Matematica da tasca, Ponte alle grazie, Milano 2002
Piergiorgio Odifreddi, La matematica del Novecento, Einaudi, Torino 2000
Piergiorgio Odifreddi, Le menzogne di Ulisse, Longanesi, Milano 2004
Piergiorgio Odifreddi, C’era una volta un paradosso, Einaudi, Torino 2001
Francesco Speranza, Matematica per gli insegnanti di matematica, Zanichelli, Bologna 1992

Lunedì, 19 Agosto 2013 20:41

Prodotti notevoli

Due interessanti applicazioni per il quadrato di un binomio e la differenza di quadrati. Una dimostrazione dell'utilità del calcolo letterale.

Lunedì, 19 Agosto 2013 20:37

Calcoli assurdi

Un altro esempio di un'applicazione erronea dei principi di equivalenza, ma, in questo caso, per le disequazioni: si riesce così a dimostrare che il quadrato di un numero può essere negativo.

PS: I punti esclamativa dell'ultimo passaggio non sono fattoriali, ma solo espressione di meraviglia e stupore!

Lunedì, 19 Agosto 2013 20:34

Sistemi di primo grado: problemi

Alcuni semplici problemi per introdurre i sistemi lineari.

Due amici con dei denari

Un uomo dice a un amico: «Se mi dai 7 dei tuoi denari avrò cinque volte la somma che ti rimarrà». L’amico gli risponde: «Se dai tu a me 5 denari, ne avrò sette volte i tuoi».

Quanti denari possiede ognuno dei due uomini?

 

Bibliografia: A cura di Nando Geronimi, Giochi matematici del medioevo, Bruno Mondadori, Milano, 2006 (problemi 22, 46 e 54)

Lunedì, 19 Agosto 2013 20:31

Equazioni di primo grado: problemi

Alcuni semplici problemi per introdurre le equazioni di primo grado.

“Ecco la tomba che racchiude Diofanto; una meraviglia da contemplare! Con artificio aritmetico la pietra insegna la sua età: Dio gli concesse di rimanere fanciullo un sesto della sua vita, dopo un altro dodicesimo le sue guance germogliarono; dopo un settimo egli accese la fiaccola del matrimonio; e dopo cinque anni gli nacque un figlio. Ma questi, giovane e disgraziato e pur tanto amato, aveva appena raggiunto la metà dell’età cui doveva arrivare suo padre, quando morì. Quattro anni ancora mitigando il proprio dolore con l’occuparsi della scienza dei numeri, attese Diofanto prima di raggiungere il termine della sua esistenza.”

 

Bibliografia: A cura di Nando Geronimi, Giochi matematici del medioevo, Bruno Mondadori, Milano, 2006 (problemi 12, 7, 3 e 2)

Lunedì, 19 Agosto 2013 20:22

1=2

Il calcolo letterale è una “macchinetta” preziosa, ma qualche volta può scoppiare in mano a chi la maneggia con poca attenzione. Attenzione, quindi, ad applicare con correttezza i principi di equivalenza delle equazioni.

Appendice n°15: L.L.Radice, La matematica da Pitagora a Newton, Franco Muzzio Editore, Trento, 2003

Lunedì, 19 Agosto 2013 20:14

Come appassionarsi alla matematica?

Appunti della conferenza di Giuseppe Pea di giovedì 22 febbraio 2007: COME APPASSIONARSI ALLA MATEMATICA? (Documento rilevato dagli appunti, non rivisto dall’autore)
Che cosa ci rende capaci di imparare la matematica? Perché oggi, nell’era di internet, la matematica e le discipline scientifiche rappresentano significative aree di insuccesso scolastico?
I bambini e i ragazzi  imparano la matematica attraverso il proprio vissuto fisico, attraverso il corpo che agisce nello spazio e nel tempo, attraverso le esperienze che aiutano a risolvere i problemi, ma la tendenza , oggi, pare essere quella di evitare ai ragazzi qualsiasi difficoltà per tenerli lontani da ogni possibile errore. Non è anche un modo per privarli delle opportunità che derivano dallo sbagliare?
Su questi interrogativi e sulle sollecitazioni proposte dagli insegnanti si soffermerà la riflessione di Giuseppe Pea, esperto di didattica della matematica e dell’informatica. 
Lunedì, 19 Agosto 2013 20:08

Utilità delle disequazioni

A cosa servono le disequazioni? Dalla seconda liceo uno sguardo sul programma di quinta e sulla necessità di imparare a svolgere le disequazioni nel modo più corretto possibile.

Pagina 100 di 124

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy