Libri

Libri (343)

Mercoledì, 31 Luglio 2013 21:16

Il numero

TRAMA: CAPITOLO PRIMO – Genesi dei sistemi di numerazione Dal contare come stabilire una corrispondenza biunivoca al contare come raggruppare: interessante la storia della nascita del numero, attraverso i sistemi di numerazione arcaici degli Egiziani, dei Babilonesi, dei Greci e dei Maya e quelli più moderni degli Indiani e degli Arabi. CAPITOLO SECONDO – Sistemi posizionali di numerazione Capitolo un po’ più complesso, dedicato allo studio delle rappresentazioni posizionali dei numeri attraverso le rappresentazioni algebriche dei codici. (interessante e curiosa la moltiplicazione araba, anche se non è spiegato il meccanismo). CAPITOLO TERZO – Divisibilità e sistemi di numerazione A partire dal teorema fondamentale dell’aritmetica, il capitolo si sviluppa con la dimostrazione della periodicità della rappresentazione dei numeri razionali in basi periodiche. Complesso dal punto di vista della comprensione: alcuni concetti sono espressi in modo eccessivamente e inutilmente complicato. In questo capitolo si fa riferimento anche al teorema di Eulero, ai numeri ciclici e ai primi di Mersenne. (curiosa la prova di divisibilità di Pascal) CAPITOLO QUARTO – Numeri reali Si comincia con il dominio di integrità dei numeri razionali, si passa attraverso il metodo assiomatico e la commensurabilità, con ampio riferimento ai pitagorici e al teorema di Pitagora. Si arriva…
Mercoledì, 31 Luglio 2013 21:15

La quarta dimensione

TRAMA: Il racconto fantastico Flatlandia, pubblicato nel 1884, narra la storia di un Quadrato che intraprende un viaggio nella terza dimensione. Rucker prende spunto da questo per parlare della Quarta Dimensione, attraverso un’analogia: la terza dimensione sta alla seconda, come la quarta sta alla terza. Il libro ha come fil rouge le Nuove avventure del Quadrato: in queste Rucker immagina che il Quadrato di Flatlandia guidi il lettore alla scoperta della quarta dimensione. Innanzi tutto Rucker riconosce che ogni oggetto di nD divide lo spazio (n + 1)D in 2 regioni: il filosofo dell’iperspazio Hinton propone i termini anà e katà per le regioni in cui il nostro spazio 3D divide quello 4D. «Tanto per avere un riferimento, possiamo immaginare che rispetto al nostro spazio il paradiso sia anà e l’inferno katà.» La quarta dimensione è un’idea molto giovane: risale a poco prima della metà dell’Ottocento ed il primo filosofo a parlarne seriamente fu Kant. Nel tardo Ottocento era molto diffuso lo spiritismo e per trovare una spiegazione alla capacità di manifestarsi degli spiriti, venne ipotizzato che si trovassero nella quarta dimensione. Zöllner, professore di astronomia all’Università di Lipsia, diede vera diffusione a quest’idea e si illuse anche di averla…
Mercoledì, 31 Luglio 2013 21:14

L'uomo che vide l'infinito

TRAMA: Ramanujan fu un eccentrico personaggio: nato in India nel 1887, si innamorò della matematica nel 1903 e, irretito dalla matematica pura, perse interesse per tutto il resto: gli venne così tolta la borsa di studio che aveva ottenuto. La sua famiglia era ai limiti della miseria e di tanto in tanto Ramanujan pativa anche la fame. Cercò di arrangiarsi con qualche ripetizione, ma non era abile come insegnante. Cominciò a riportare i suoi appunti in alcuni quaderni che dimostrano il suo sviluppo fuori dalle convenzioni. I genitori lo sopportarono a lungo, ma alla fine si irritarono e, forse verso la fine del 1908, gli organizzarono un matrimonio combinato. Il 1911 fu un anno positivo e promettente: ottenne un incarico che gli permetteva di mantenersi economicamente e di dedicare tutto il tempo che voleva alla matematica. Le serie furono il primo amore di Ramanujan e furono l’argomento del suo primo articolo pubblicato sul Journal. In questo, come in tutta la sua opera, Ramanujan trovò rapporti tra cose che sembravano senza rapporto. Le dimostrazioni che dava erano abbozzate o incomplete, ma con questa pubblicazione cominciò a farsi notare. Gli eventi cospirarono per dirgli che sarebbe stato ascoltato con maggiore cognizione di…
Mercoledì, 31 Luglio 2013 21:12

L'infinito

TRAMA: Nella realtà del mondo fisico, nulla parla d’Infinito: lo spazio, il tempo, la massa, il numero delle cariche subnucleari… si tratta di cose immense, di numero elevatissimo, ma non infinito. Eppure l’intelletto umano concepisce l’Infinito e ne subisce il fascino. Il posto d’onore, nell’indagine sull’Infinito spetta a Georg Cantor: “è lui che ha saputo trovare le chiavi di quello che il grande matematico David Hilbert definì il paradiso di Cantor”. Quest’avventura intellettuale è raccontata da Zichichi con una favola: in un luogo ed un tempo imprecisati, un Imperatore escogitò un nuovo metodo per rifornire di denaro le sue casse, dichiarando vincitore di un concorso colui che avesse raggiunto il massimo numero di cose in suo possesso. Qualsiasi cosa fosse. Il valore era irrilevante. In questo modo l’Imperatore avrebbe misurato la ricchezza dei suoi sudditi. Alla chiusura del concorso, i contabili dell’Imperatore non riuscirono a stabilire se fossero di più i cubetti d’oro del conte Alberto, le pietre preziose del Marchese Augusto o i numeri del notaio don Luigi. La principessa Cristina risolse il problema confrontando i tre numeri tramite una corrispondenza biunivoca: la conclusione fu che il premio andasse distribuito ex-aequo ai tre. Con loro la Principessa fondò una…
Pagina 84 di 86

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy