«Matematicaterapia» è il titolo di questo libretto di Ennio Peres e il sottotitolo, «Come la matematica può semplificarci la vita», ci dice già molto di quello che troveremo durante la lettura. Il libro è stato pubblicato nel 2011 da Salani ed è solo uno dei tanti di questo autore così prolifico, matematico ma anche “giocologo” – definizione che, stando a Wikipedia, l’autore ha coniato per sé – vista la sua passione per l’enigmistica e i giochi in genere. L’autore ha un passato da insegnante e ha collaborato con vari giornali e riviste, basti ricordare la rubrica «Lettere e cifre» sul quotidiano La Stampa.
Il libro – che è un “libretto” solo nel formato, vista la densità degli argomenti proposti – è ricco di spunti e curiosità: è una raccolta di quindici capitoli, nei quali si esplorano i diversi aspetti della matematica, dalla magia alla probabilità, dai paradossi agli enigmi logici, dalla Natura all'arte, dalla musica all’umorismo. Si tratta di piccoli capitoli che possono anche essere letti in ordine sparso, lasciandosi guidare dalle proprie passioni. Per Peres non esiste ambito nel quale non si possa trovare la matematica e il lettore potrebbe usare questa lettura per un primo approccio: la ricca bibliografia che accompagna ogni capitolo permette un ulteriore approfondimento per quanti lo desiderassero.
«Questo volumetto mostra alcuni significativi esempi di come un tale modo di procedere possa tornare utile nei settori più disparati, consentendo di acquisire maggiore sicurezza e serenità, nel rapporto con molte realtà del mondo in cui viviamo» ci dice l’autore nell’introduzione. La lettura è suggerita a tutti: a chi avesse bisogno di rappacificarsi con la matematica, a chi, già appassionato, vuole colmare la propria sete di sapere, agli insegnanti che possono trovare nuovi stimoli per rendere più appetibile la matematica per gli studenti, agli studenti che possono scoprire il divertimento nascosto in quella che, in genere, viene descritta come una materia arida.
TRAMA:
Con questo bellissimo volume, Piergiorgio Odifreddi ci regala non uno, ma sette viaggi nel mondo dei numeri. Il primo viaggio, “Le albe del numero”, è dedicato alla storia dei sistemi di numerazione; il secondo, “Unità”, è dedicato ai numeri da 0 a 9; il terzo, “Cifre”, illustra alcune curiosità che coinvolgono le dieci cifre del nostro sistema di numerazione. Dal quarto in poi, i numeri coinvolti sono grandissimi: in “Decine e centinaia” sono elencate le curiosità di alcuni numeri: 10, 11, 12, 14, 41, 42, 64, 100, 153, 666; in “Migliaia, milioni e miliardi” si procede con le curiosità, partendo da 1000 e arrivando a 4.294.967.297. Il sesto e il settimo viaggio sono dedicati alle potenze e alle superpotenze di 10 e quando sta per girarci la testa viste le elevate altezze alle quali ci ha portato l’autore, il viaggio si interrompe, promettendoci l’infinito, ma “in una storia che rimandiamo a un’altra occasione”.
Ogni viaggio è diviso in dieci piccoli paragrafi, poco impegnativi come numero di pagine, ma molto densi dal punto di vista dei contenuti: le numerose immagini, foto tratte dall’attualità, immagini curiose o opere d’arte, rendono più leggero il cammino, mentre ogni paragrafo ci guida nell’esplorazione non solo del mondo matematico, ma anche del mondo dell’arte, della letteratura, della musica, della religione e della scienza in generale. I numeri, infatti, invadono ogni aspetto della nostra vita, ogni aspetto della nostra cultura. I numeri non appartengono solo alla matematica, ma anche alla sfera del linguaggio, visto che servono a descrivere la realtà nella quale viviamo: in alcune parti, sembra di leggere dei veri scioglilingua, quando Odifreddi illustra al lettore quanto i numeri siano presenti anche in parole al di sopra di ogni sospetto.
I più grandi matematici del passato ci accompagnano in questo viaggio, da Archimede a Ramanujan, da Pitagora a Eulero, mentre scopriamo che i numeri non sono tutti uguali: ci sono i numeri primi, i numeri gemelli, i numeri perfetti, i numeri amicabili… D’altra parte, “I numeri sono le vocali della matematica”, come dice il poeta Novalis, se però consideriamo che i numeri che ci fa conoscere Odifreddi sono solo quelli naturali, possiamo in qualche modo quantificare quanto sia estesa la matematica che ci circonda: i numeri naturali sono solo una parte dei numeri che abbiamo a disposizione e, considerato che i numeri sono le vocali della matematica, se pensiamo alla proporzione che lega le vocali all’intero alfabeto, possiamo in qualche modo intravedere la ricchezza della matematica. Infatti, il percorso presentato da Odifreddi è, per quanto ricco, parziale.
L’inizio del libro è il racconto «La gara di matematica» di Cesare Zavattini, perché “costituisce una metafora di questo libro”. Le parole di Odifreddi lo descrivono mirabilmente: “conta storie di numeri in maniera dapprima ordinata e consecutiva, e poi via via più disordinata e rapsodica, saltando dall’uno all’altro con balzi sempre più lunghi, nel vano tentativo di raggiungere l’infinito.”
COMMENTO:
La lettura di questo libro è alla portata di tutti ed è consigliata in particolar modo a coloro che non hanno imparato ad amare la matematica: attraverso il facile accesso costituito dai numeri, con una grafica accattivante e brevi percorsi che possono essere affrontati anche singolarmente, Odifreddi offre un percorso coinvolgente e, visti i continui riferimenti ai vari ambiti del sapere, altamente culturale.
TRAMA:
L’antica Grecia è a ragione considerata la culla della nostra cultura: scienze, filosofia, arte, letteratura, ma soprattutto matematica, hanno trovato qui i propri natali. Platone ebbe il merito di scoprire i poliedri regolari, detti appunto platonici, e di costruire la realtà su di essi: questi sono legati indissolubilmente alla sezione aurea e, con ogni probabilità, l’interesse per il rapporto aureo è scaturito proprio dai tentativi di costruirli, anche se i primi a parlare di numeri irrazionali pare siano stati i pitagorici, nel VI sec. a.C.
Con la pubblicazione, nel 300 a.C., degli Elementi di Euclide, l’opera matematica più grandiosa e influente che sia mai stata scritta, il rapporto aureo comincia a diffondersi. Scavalcando gli arabi, che si occuparono principalmente di algebra, si arriva a Leonardo Fibonacci, che ha avuto il merito di diffondere in Europa le cifre indo-arabiche. Fibonacci usò consciamente il rapporto aureo nella soluzione di alcuni problemi e, formulando il quesito dei conigli, ne ha ampliato in modo decisivo la portata e le applicazioni, grazie al legame trovato successivamente da Keplero.
Nel Rinascimento, alcuni pittori hanno fornito contributi matematici di un certo rilievo: il più prolifico fu Piero della Francesca, con tre opere matematiche, con le quali dimostra che la prospettiva è fondata solidamente su basi scientifiche. Alcune delle questioni algebriche che affrontò furono riprese dal matematico Luca Pacioli, che, con il suo Compendio de divina proportione, presenta un riassunto dettagliato delle proprietà del rapporto aureo, portando a un rinnovato e diffuso interesse per la sezione aurea.
Il rapporto aureo divenne fondamentale anche per il funzionamento dell’universo, grazie al contributo di Keplero, che – trovato convincente il sistema copernicano – scelse di separare le orbite dei pianeti con i solidi platonici. Il modello era sbagliato, ma era sicuramente innovativo.
Nel mondo dell’arte, Paul Sérusier fece uso del rapporto aureo in alcune opere, soprattutto per “controllare, e in qualche caso disciplinare” le sue invenzioni, mentre Le Corbusier, che all’inizio aveva idee negative al riguardo, fece culminare la sua ricerca nel “Modulor”, che era in grado di conferire dimensioni armoniose a tutto, dalle maniglie delle porte agli spazi urbani. Numerosi autori hanno sostenuto che il rettangolo aureo sarebbe esteticamente più soddisfacente di tutti gli altri rettangoli, tanto che uno dei fondatori della moderna psicologia, Gustav Theodor Fechner decise di effettuare degli esperimenti, negli anni Sessanta dell’Ottocento, per verificarlo. Nel secolo scorso, ne sono stati sottolineati l’ingenuità e i difetti metodologici, visto che “non sembra esserci alcuna base razionale della teoria estetica che considera la sezione aurea un ingrediente decisivo della bellezza delle forme visive”. Anche in ambito musicale, le speculazioni riguardanti il rapporto aureo sono numerose: accanto a usi incontestabili del rapporto aureo, ve ne sono altri dovuti all’immaginazione dei loro scopritori. Tutti i tentativi di svelare la presenza di fin varie creazioni artistiche, dalla pittura alla musica alla poesia, si basano sul presupposto che esista un canone di bellezza ideale, ma la storia ci dice che non sempre alla base della bellezza c’è la sezione aurea.
Per realizzare le tassellature del piano, si è sempre saputo che il pentagono – il poligono più legato al rapporto aureo – non è adatto a ricoprire una superficie in modo completo e regolare. Nel 1974, Roger Penrose, fisico di Oxford, ha scoperto due schemi fondamentali di intarsio per coprire una superficie, sfruttando una simmetria quintupla, ovvero basandosi sul rapporto aureo. Apparentemente questi suoi studi dovevano restare confinati nell’ambito della matematica ricreativa, ma nel 1984 l’ingegnere israeliano Dany Schectman ha trovato una lega di alluminio con simmetria quintupla.
Nell’ultimo capitolo, l’autore si concentra sulle diverse interpretazioni della matematica: tra la visione della matematica come dotata di un’esistenza indipendente dal pensiero umano e quella di una matematica inesistente al di fuori del pensiero, l’autore sostiene che solo gli assiomi sono frutto di una scelta umana, ma dopo di essi la matematica gode in un’esistenza autonoma. “Il rapporto aureo è un prodotto della geometria, un’invenzione umana. Ma gli uomini non immaginavano in quale magico regno di fate ed elfi quel prodotto li avrebbe portati.”
COMMENTO:
Storia della matematica, arte, musica, poesia sono gli ingredienti di questo prezioso libro, nel quale la sezione aurea non viene solo definita, ma ne viene indagata la presenza nelle opere d’arte più famose e nei posti meno comuni, come i quasi-cristalli. Proprio il carattere eclettico del libro permette di incontrare i gusti di tutti i lettori, non solo degli appassionati di matematica ed è in particolare consigliato a tutti coloro che si interessano di arte. Il lettore viene guidato partendo dai contenuti più semplici, come il significato dei numeri per i pitagorici, fino ad arrivare ai frattali, con la loro bellezza e complessità. Peccato manchino le immagini a colori, almeno nell’edizione della Rizzoli.
© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy