Visualizza articoli per tag: matematica

Giovedì, 01 Agosto 2013 07:15

L'ultima storia di Miguel Torres da Silva

TRAMA:
Nel Portogallo del 1772, Manuel, nipote di Miguel Torres da Silva, morto da poche settimane, lascia la sua casa e la sua famiglia, per andare a Coimbra, a studiare matematica all’università e per ritrovare anche la fine della storia che il nonno stava raccontando quando è morto. Per decisione del nonno, a Coimbra avrebbe “esplorato i segreti dei numeri”. Comincia a frequentare il seminario del prof. Ribeiro, dal quale riesce subito a farsi notare: il professore lo convoca nel suo ufficio e comincia così un rapporto di amicizia tra i due. 
Impegnato nel tentativo di riportare alla luce dentro di sé le storie raccontate dal nonno, Manuel  si chiude in biblioteca, ma non riesce a ottenere niente di buono. Il professore gli consiglia di recarsi al mercato, in mezzo alla gente, dove c’è confusione: “la biblioteca è il luogo dei pensieri ordinati, delle storie stampate, il luogo della lettura e dell’apprendimento”, invece è nel “coro di voci [che] si inserirà anche la voce del nonno”. È proprio frequentando il mercato che Manuel incontra Maria, figlia di un mercante di stoffe. In realtà, è lei a cercarlo, perché vuole conoscere il nipote di Miguel Torres da Silva, che il padre incontrava spesso e dal quale era rimasto affascinato. Manuel, colpito dalla sua bellezza, decide di aspettarla l’indomani sull’uscio di casa, di seguirla e di fingere poi di incontarla per caso. Si danno appuntamento per il venerdì dopo e, proprio nel momento in cui si incontrano, Manuel le racconta una storia, come se il legame con lei avesse già sbloccato qualcosa dentro di lui ed avesse aperto la sua memoria. 
Maria è promessa sposa ad un altro: il loro amore continua a crescere, si frequentano di nascosto e Maria è fiduciosa: sa che riuscirà, in qualche modo, a convincere il padre a non farle sposare il promesso. In realtà, è la matematica ad aiutarli: il padre di Maria regala a Manuel una piccola maiolica ornata di decorazioni turchesi, sulla quale è riportato il numero 284. Quando, durante un suo viaggio, gli viene regalata una magnolia simile, ma con il numero 220, perché la regali alla figlia, il padre capisce che Maria deve andare sposa a Manuel: i due numeri infatti sono indissolubilmente legati, essendo una famosa coppia di numeri amici. 
Ma Manuel deve anche completare il suo cammino e si reca quindi a Porto, per accompagnare il professore. Sarà proprio nella stessa locanda di cui parla il nonno nel suo ultimo racconto che Manuel riuscirà a ritrovare la fine della storia che lo stesso stava raccontando quando è morto.
 
COMMENTO:
Si corre velocemente da una pagina all’altra, per scoprire la fine della storia che Miguel stava raccontando quando l’ha sorpreso la morte. Ma non è solo questo ad incatenare il lettore. La lettura è molto scorrevole e l’intelaiatura matematica della storia fa saltare da un capitolo all’altro, in attesa di sempre nuove sorprese e incursioni in campo matematico.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:11

Zio Petros e la congettura di Goldbach

TRAMA:
Zio Petros è la “pecora nera” della famiglia Papachristos: i due fratelli minori si sono impegnati nella ditta di famiglia, mentre lui si dedica al giardinaggio e agli scacchi, dopo aver sprecato il suo grande dono, il talento per la matematica.
Il nipote resta però affascinato da questo zio e, alimentato da una forte passione per la matematica, cerca il suo appoggio nel proseguimento degli studi. Al contrario delle aspettative, lo zio non sembra lusingato dall’interesse del nipote e cerca di fargli cambiare strada. Infatti, gli propone un difficile problema di matematica: se non riuscirà a risolverlo, dovrà rinunciare a studiare matematica. Al termine dell’estate, il nipote non è giunto alla soluzione del problema e lo zio gli fa firmare un foglio nel quale dichiara che non cercherà mai di ottenere una laurea in matematica.
Il nipote, sfiduciato, parte per gli Stati Uniti, dove decide di conseguire una laurea in economia. All’inizio del terzo anno di studi, il suo compagno di stanza, Sammy, studente di matematica, gli rivela che il problema che gli aveva sottoposto lo zio non era altro che la Congettura di Goldbach, uno dei tre problemi più difficili della matematica.
Il nipote, arrabbiato, chiede una spiegazione allo zio, ma lo zio risponde con uno strano telegramma. Su consiglio del compagno di stanza, il nipote decide di studiare matematica e, nel prosieguo degli studi, recupera il tempo perduto. Ma non rinuncia a scoprire il mistero dello zio, che si è dedicato per tutta la vita alla dimostrazione della Congettura di Goldbach.
Rientrato ad Atene, lo zio gli racconta tutta la sua vita: il suo giovane talento, la collaborazione con Hardy, Littlewood e Ramanujan, l’incontro con Turing, che, parlandogli del teorema di incompletezza di Gödel, assesta un duro colpo ai suoi tentativi di dimostrazione, il suo amore sfortunato per una donna che lo lascia per un giovane tenente e, alla fine, la sua decisione di rientrare ad Atene e di rinunciare alla matematica.
Il nipote non si dà per vinto: vorrebbe che lo zio riconoscesse il proprio fallimento e riesce ad ottenere da lui che gli racconti tutti i suoi progressi nella dimostrazione, dall’applicazione del metodo analitico a quello “dei fagioli”. Lo zio si infervora durante la spiegazione e, alla fine, torna alla dimostrazione: i suoi tentativi lo portano a chiudersi in se stesso e a riprendere la via che aveva interrotto. 
L’ultimo contatto con il nipote avviene poco prima della sua morte, quando lo chiama chiedendogli di presentarsi con un altro testimone, perché ha dimostrato la congettura.
 
COMMENTO:
La lettura del libro è scorrevole e veloce. La storia di Zio Petros, con il mistero che avvolge la sua vita, impone un ritmo di lettura serrato, per la curiosità di conoscere la fine della vicenda.
Interessante come lettura poco impegnata, ottimo per chi abbia un minimo di conoscenze matematiche e filosofiche e possa quindi apprezzare i riferimenti alla Crisi dei Fondamenti dell’inizio del XX secolo. I numerosi personaggi famosi, Hardy, Littlewood, Ramanujan, Turing, sono una simpatica cornice che permette di apprezzare ancora di più l’opera.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:07

I magnifici dieci

TRAMA:
Filippo, ragazzino di 8 anni, è molto legato al nonno, insegnante di matematica in pensione, con il quale ha un rapporto fatto di complicità. Quando torna a casa da scuola, riferisce sempre al nonno quello che la maestra Grazia gli ha insegnato e il nonno, dal canto suo, trova sempre il modo per collegarsi alla matematica e parlare un po’ di numeri. Si comincia, quindi, con il sistema di numerazione posizionale decimale, si passa attraverso l’invenzione dello zero, il sistema binario, si tocca la figura di Fibonacci, colui che ha avuto il pregio di portare in Italia le cifre arabe, ma non si dimentica nemmeno Talete e la sua misurazione dell’altezza della piramide. I pretesti per parlare di matematica sono i più vari: dalla lezione della maestra Grazia alla preparazione di una torta, con la conseguente necessità di stabilire se la teglia rotonda abbia la stessa superficie di quella rettangolare e, quindi, passando attraverso il metodo di esaustione di Archimede e gli integrali. 
Quando il nonno, però, deve andare dallo zio Mauro, perché anche gli altri nipoti reclamano la sua attenzione, Filippo crolla. Il nonno era tutto il suo mondo e si sente abbandonato. È la sorella, allora, voce narrante di questo simpatico libretto, che prende in mano la situazione e decide di stare un po’ più vicina al fratellino, per fargli sentire meno il peso dell’assenza del nonno. E così il libro si conclude con la trattazione dei frattali, una sorta di matematica “artistica”.
 
COMMENTO:
I temi sono i più disparati, ma sono spiegati in modo semplice e chiaro, libero da ogni difficoltà e al tempo stesso, con la profondità che caratterizza ogni argomento. Meno infantile rispetto al “Mago dei numeri”, meno pesante rispetto al “Teorema del Pappagallo”, può essere un’ottima lettura per un ragazzo del biennio della scuola superiore, visto che ogni argomento proposto è argomento di studio. Si legge in un attimo e aiuta nella comprensione di argomenti che possono essere sembrati complicati nella trattazione scolastica, attraverso una rivisitazione leggera e solare.
Pubblicato in Libri
Giovedì, 01 Agosto 2013 07:06

La matematica del Novecento

TRAMA:
La trattazione della matematica moderna non è cosa facile, a causa della sua notevole astrazione, dell’esplosione produttiva che ha investito il XX secolo e della sua suddivisione in sottodiscipline sempre più numerose. La scelta di Odifreddi nella trattazione è stata quella di dare rilievo ai vincitori della medaglia Fields o del premio Wolf e ai problemi di Hilbert, ma questi non esauriscono le numerose scoperte del XX secolo.
I FONDAMENTI – La matematica porta alla luce oggetti e concetti che, al loro primo apparire, sono inusuali e non familiari. Un atteggiamento tipico, fin dai tempi dei Greci, è stato il tentativo di limitare sorpresa e disagio il più possibile, scaricando il peso dell’edificio della matematica su solide fondamenta. Nel secolo VI a.C. i Pitagorici posero a fondamento della matematica l’aritmetica dei numeri interi e razionali, poi fu la volta della geometria e successivamente dell’analisi. Nel secolo XIX il cerchio si chiuse e l’analisi fu ridotta a sua volta all’aritmetica. Ma il processo di costruzione e decostruzione non si fermò qui. La caratteristica essenziale delle nuove fondazioni è che esse si basano non più sugli oggetti classici della matematica, ma su concetti completamente nuovi.
Negli anni ’20, gli insiemi sembrarono un buon fondamento per la matematica; negli anni ’40, un gruppo di matematici francesi, Bourbaki, trovò una soluzione in un’analisi non più logica ma strutturale; negli anni ’60, si arriva al concetto di categoria, che contiene come casi particolari sia gli insiemi che le strutture. Nessuno dei tre approcci è però soddisfacente dal punto di vista degli informatici, che hanno trovato una fondazione alternativa nel Lambda Calcolo proposto da Church. 
MATEMATICA PURA – Per millenni la storia della matematica è stata la storia dei progressi nella conoscenza di entità numeriche e geometriche. Negli ultimi secoli invece e soprattutto nel XX sec. sono venute alla luce nuove e disparate entità, che hanno acquistato una loro indipendenza, e ispirato quella che è stata chiamata una nuova età dell’oro della matematica. Se, da un lato, la matematica moderna è dunque il prodotto di uno sviluppo che affonda le sue radici in problematiche concrete e classiche, dall’altro essa è anche la testimonianza di un’attività che trova la sua espressione in costruzioni astratte e contemporanee.
MATEMATICA APPLICATA – Le applicazioni della matematica hanno costituito una caratteristica costante della sua storia e ciascuna branca della matematica classica è stata, ai suoi inizi, stimolata da problemi pratici. La matematica del secolo XX in questo non fa eccezione. Alcune di queste motivazioni derivano da aree scientifiche la cui fertilità è sperimentata, quali la fisica; altre motivazioni derivano invece da aree che solo nel secolo XX sono diventate scientifiche, come l’economia e la biologia.
MATEMATICA AL CALCOLATORE – Il calcolatore sta cambiando sostanzialmente la vita quotidiana, non solo dell’uomo comune, ma anche del matematico. 
La prima applicazione matematica della nuova macchina fu, naturalmente, l’utilizzo dei suoi poteri computazionali. È però nella matematica applicata che gli usi del calcolatore stanno provocando gli effetti più visibili. L’utilizzo del calcolatore ha permesso di risolvere lo studio dei sistemi dinamici, portando alla nascita della teoria del caos, ma non si possono certo tacere gli sviluppi della grafica computerizzata: con l’ausilio visivo, sono state scoperte nuove superfici e le immagini più note sono quelle dei frattali. 
PROBLEMI INSOLUTI – La matematica è sostanzialmente un’attività di proposta e di soluzione di problemi e la loro scorta è inesauribile, anche perché le soluzioni ne pongono spesso di nuovi. I matematici ritengono comunque che i problemi che essi si pongono non soltanto siano risolubili, ma anche che saranno, prima o poi, effettivamente risolti. Una soluzione accettabile di un problema matematico può essere anche una dimostrazione della sua insolubilità. Naturalmente, soluzioni negative punteggiano l’intera storia della matematica, ma è stato nel secolo XX che il fenomeno ha raggiunto massa critica, anche grazie alla sua chiarificazione attraverso il teorema di Gödel.
 
COMMENTO:
Libro interessante, anche se non di facile lettura, soprattutto se non si ha una buona preparazione in matematica. Sarebbe bene seguire l'indicazione dell'autore, che suggerisce di leggere il libro due volte: in effetti, con una seconda lettura, è possibile ottenere una migliore visione d'insieme e capire i collegamenti che vengono fatti. Inoltre, pregevole il fatto che il libro si presti ad una lettura non necessariamente lineare: si può infatti scegliere di leggere il libro solamente "piluccando" quelli che sembrano i paragrafi più interessanti. 
Su tutto, vorrei ricordare l'ottima prefazione di Gian Carlo Rota, interessante e divertente, che offre uno spaccato della matematica un po' diverso da quello cui ci hanno abituato a scuola.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:03

Matematica da tasca

TRAMA:
Ma chi l’ha detto che la matematica è una materia noiosa, arida, difficile, astratta? Renderla divertente, stimolante, piena di fascino e persino poetica è lo scopo di questa raccolta di “storie matematiche” che si propone di spiegare ai non addetti ai lavori problemi fondamentali e non dell’universo matematico e logico. Due pagine per affrontare ogni argomento: si parte dal funzionamento dell’abaco per arrivare al calcolo delle probabilità, passando per il teorema di Fermat, il paradosso di Achille e la tartaruga, l’antinomia di Russell, le bolle di sapone, la quadratura del cerchio e i solidi platonici. 
E Beutelspacher non dimentica, con un tocco di umorismo, di metter in luce anche alcuni limiti e testardaggini inutili della matematica come il laborioso tentativo di dimostrare quale sia la disposizione migliore per una catasta di arance, cosa che tutti i fruttivendoli sanno dalla notte dei tempi. Piccoli assaggi di “pensiero” logico e matematico per tutti i palati.
 
COMMENTO:
Sicuramente adatto agli alunni, soprattutto a quelli che hanno poca voglia di leggere, visto che il libro è poco impegnativo, ma molto scorrevole e rapido… si presta anche per piccoli assaggi in tempi diversi, visti i brevi capitoli, indipendenti gli uni dagli altri.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:02

Da Pitagora a Borges

TRAMA:
In questa discussione, Citrini compare mentre sta sonnecchiando davanti al computer, in un’afosa giornata di luglio, cercando di organizzare del materiale sull’infinito, raccolto alla rinfusa. Ad un certo punto, compare un messaggio nella posta elettronica, nonostante il computer non sia connesso alla rete: è Omero che interviene nel suo monologo interiore, con un messaggio e-mail. 
Comincia così una chat con l’Aldilà, alla quale partecipano numerosi personaggi. Gli scambi sono sempre regolati da Maria Gaetana Agnesi, che funge da moderatrice, anche se non sempre riesce a tenere a bada coloro che intervengono. Come alla fine del penultimo capitolo, quando Peano distrugge il proprio computer sfondandolo, forse con un’ascia.
 
COMMENTO:
Interessante, anche se a volte complesso, a causa anche delle numerose citazioni, spesso in lingua originale e senza alcuna traduzione. In generale scorrevole e anche per non addetti ai lavori, nonostante alcuni passaggi possano risultare un po’ ostici per chi è digiuno di matematica.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 06:58

Matematica sulle barricate

TRAMA:
Il 25 ottobre 1811, nasce Evariste Galois. È importante specificare che, al tempo della sua nascita, domina in Francia Napoleone Bonaparte: la vita e la morte di Evariste Galois saranno strettamente connesse alle vicende storiche della Francia.
Il 3 maggio 1814, Luigi XVIII torna a Parigi e, dopo la parentesi dei 100 giorni, l’8 luglio si attua la Restaurazione Borbonica; nello stesso periodo, Nicholas-Gabriel, padre di Evariste, diventa sindaco della cittadina di Bourg-la-Reine. È proprio durante il periodo del Terrore Bianco, con il massacro di centinaia di bonapartisti, che ha luogo l’assassinio dell’unico erede al trono. Il 16 settembre muore Luigi XVIII e gli succede Carlo X.
Nell’estate del 1826, il liceo Louis-le-Grand, che Evariste ha cominciato a frequentare nel 1823, ha un nuovo direttore, Laborie, che ritiene Galois troppo giovane per frequentare già la classe di Rhétorique: dopo una lunga controversia con la famiglia, a gennaio Evariste viene retrocesso. Per assurdo, è proprio grazie a questa retrocessione che Evariste scopre il suo amore per la matematica. Nel giugno del 1828 sostiene il primo esame per l’ammissione all’Ecole Polytechnique, ma viene bocciato. La primavera del 1829 è il periodo più felice della vita di Galois: le sue idee in matematica sono sempre più chiare e scrive due memorie, che grazie all’intervento del professor Richard, nel maggio dello stesso anno saranno presentate a Cauchy.
Il 2 luglio Nicholas-Gabriel si suicida, a seguito della campagna di diffamazione promossa dal parroco del paese e da un assessore, che ritenevano il padre di Evariste troppo liberale. Nell’agosto dello stesso anno, precipita anche la situazione sul fronte nazionale: Carlo X opera un colpo di stato.
A seguito delle difficoltà economiche sopraggiunte dopo la morte del padre e della seconda bocciatura all’esame di ammissione all’Ecole Polytechnique, Galois sostiene gli esami per essere ammesso all’Ecole Préparatoire, per diventare insegnante: il 20 febbraio 1830 firma il documento con il quale si impegna al servizio dell’istruzione pubblica per i successivi dieci anni.
In maggio, partecipa al Grand Prix de Mathématiques indetto dall’Accademia, ma Fourier, che si era portato a casa il suo manoscritto, muore il 16 maggio: il manoscritto non viene più ritrovato e Galois viene escluso dal premio. Nello stesso periodo compaiono tre sue note sul Bullettin de Férrussac, rivista che accoglieva solo articoli di scrittori noti.
Nel corso delle Tre Gloriose (fine luglio), Guigniault, direttore dell’Ecole Préparatoire, vieta agli studenti di lasciare la scuola per partecipare alla rivolta, ma poi mette i propri studenti a disposizione del Governo Provvisorio, quando l’opposizione destituisce Carlo X. Il 9 agosto, Luigi Filippo I, duca di Orléans, sale al potere. Nell’estate del 1830, Galois entra a far parte della Societé des Amis du Peuple e il contrasto con Giugniault, dovuto all’atteggiamento di quest’ultimo durante le Tre Gloriose, porta Evariste, in dicembre, all’espulsione dalla scuola. Si arruola così nella Guardia Nazionale, proprio nel momento in cui Luigi Filippo scioglie la Guardia Nazionale: diciannove artiglieri si ribellano e vengono arrestati. 
Il 16 gennaio del 1831, Galois presenta una nuova introduzione per la propria memoria all’Accademia, ma nemmeno questa ha un seguito. Intanto avviene il processo dei diciannove, che si conclude il 16 aprile con un verdetto di assoluzione. Il 9 maggio la Societé des Amis du Peuple organizza un banchetto, al quale partecipa anche Galois, nel corso del quale egli stesso fa un brindisi, “A Luigi Filippo!”, mentre con una mano alza un bicchiere colmo di vino e con l’altra brandisce, minacciosamente, un coltello a serramanico. Verrà incarcerato per questo e, al processo del 15 giugno, si perviene a un verdetto di assoluzione, grazie alla tesi della difesa, secondo la quale il banchetto era privato.
Successivamente, Galois rende pubblica la trascuratezza dell’Accademia e il 4 luglio, Lacroix e Poisson, incentivati a visionare le sue memorie, esprimono un giudizio negativo. Il 14 luglio, durante i festeggiamenti per l’anniversario della presa della Bastiglia, Galois viene arrestato per porto illegale di uniforme e di armi proibite: resterà nel carcere di Sainte-Pélagie fino al 29 aprile del 1832. Durante la carcerazione, scoppia un’epidemia di colera e, per questo motivo, i più cagionevoli di salute e i più giovani ospiti del carcere, vengono trasferiti in una casa di salute: tra di essi c’è Galois, che, grazie a questo trasferimento, conosce Stéphanie, della quale si innamora. Ma non è corrisposto.
Ai primi di maggio del 1832, la duchessa di Berry rientra in Francia: è la madre del legittimo erede al trono. La Societé des Amis du Peuple si riunisce il 17 maggio: sarebbe bene scatenare una rivolta per far sentire Luigi Filippo I tra due fuochi e ottenere maggiore libertà. Servirebbe un cadavere per scatenare la rivolta. Galois offre il proprio corpo: organizza un duello, prepara delle lettere, perché questo duello risulti credibile e il 30 maggio viene ferito. Muore di peritonite il 31 maggio. Il primo giugno, la Societé si riunisce per prendere accordi per organizzare il funerale di Galois, ma la morte del generale Lamarque, appena successa, viene preferita come occasione per scatenare la rivolta. La morte di Galois è stata inutile. 
La memoria di Galois verrà pubblicata solo quattordici anni dopo la sua morte e costituisce il fondamento dell’algebra moderna.
 
COMMENTO:
Molto interessante questa teoria sulla morte di Galois. Inquadrato molto bene storicamente, il libro può appassionare anche gli storici, senza che abbiano alcuna nozione matematica. La sfortunata vicenda umana di Galois non può che coinvolgere anche a livello emotivo.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:25

Perché la matematica

TRAMA:
Il libro comincia con un paradosso: “La matematica dimora nel cuore dell’uomo, ma in questa casa è straniera”. La seconda parte dell’enunciato è una verità quasi evidente, basta notare che di fronte alla domanda: “Scusi, per lei cosa è la matematica?” si ottengono, per la maggior parte, reazioni di smarrimento e imbarazzo. Per dimostrare la prima parte dell’enunciato, invece, bisogna innanzi tutto definire la matematica. La scienza in generale è l’insieme di tutte le teorie, caratterizzate da coerenza, uniformità degli argomenti trattati, verità delle proposizioni elencate. La matematica è l’insieme di tutte le teorie per le quali i procedimenti di verificazione non richiedono l’esperienza, anche se bisogna sottolineare che l’esperienza non è estranea ai processi di formazione. La matematica non è solo una tecnica, ma una forma completa e autonoma di conoscenza.
Il metodo caratteristico di cui si avvale la matematica per raggiungere la sua verità è il metodo assiomatico-deduttivo: infatti, dimostrare un teorema significa far vedere, con una serie di ragionamenti, che esso non è che una conseguenza degli assiomi. Fino al XIX secolo, gli assiomi erano considerati come sentenze inoppugnabili a causa della loro grande evidenza, ma i moderni sistemi di assiomi sono slegati dalla realtà e gli oggetti matematici sono involucri contenenti certe cariche di comportamenti logici. Tutto ciò fece affermare a Russell che la matematica è quella scienza nella quale non si sa di che cosa si parla e non si sa se ciò che si dice è vero.
La matematica ha molteplici applicazioni: è il linguaggio naturale della fisica, ma serve anche per lo studio dei fenomeni sociali. Essa si serve della logica, un codice che garantisce l’oggettività del linguaggio. Aristotele sembra essere stato il primo pensatore ad occuparsi dello studio sistematico delle leggi dell’inferenza logica, della quale la matematica era considerata un capitolo. Ma l’origine di tutti i guai sono stati gli Elementi di Euclide. In quest’opera compaiono cinque assiomi: i primi quattro evidenti e semplicissimi, il quinto no, ha tutta l’aria di essere un teorema. Nel XVIII secolo, Saccheri sviluppa una geometria con cinque assiomi: i primi quattro corrispondono a quelli di Euclide, il quinto è la negazione del quinto degli Elementi. Saccheri era convinto che sarebbe giunto ad una contraddizione, ma i risultati cui perviene sono mostruosi unicamente nella misura in cui contraddicono l’intuizione. Se si ammette che gli assiomi si riferiscono ad una “realtà”, Saccheri ha raggiunto il suo scopo, ma più avanti Bolyai e Lobatchewsky arrivarono, per questa strada, alla scoperta delle geometrie non euclidee. Si arrivò a dimostrare che le geometrie non euclidee e la geometria euclidea sono così legate, che una eventuale contraddizione delle une avrebbe potuto dare luogo ad una contraddizione anche nell’altra.
Hilbert e Study successivamente dimostrarono che è possibile trasformare ogni teorema di geometria euclidea in un corrispondente teorema di aritmetica. Perciò i matematici decisero di salvare l’aritmetica dalla contraddizione, radicandola nella logica. Verso il 1870, Frege pose mano a questa titanica impresa, ma Russell scoprì nel suo lavoro almeno una proposizione legittima eppure autocontraddittoria e rase al suolo la dottrina che pretendeva di eliminare a priori non solo le proprie contraddizioni, ma anche quelle delle dottrine vassalle, come l’aritmetica.
Fu ancora Russell a indicare la strada giusta per il superamento della crisi dei fondamenti, istituendo una teoria che stabilisce un certo insieme di proibizioni nella composizione delle frasi. La via giusta per uscire dalla crisi era quella di adoperare la matematica per giustificare la logica e non viceversa. Le risposte vennero trovate in pochi decenni, attraverso i lavori di molti ricercatori: si isolarono tutte le regole grammaticali del linguaggio matematico e vennero scritti simbolicamente gli assiomi della logica, per il cui uso vennero fissate poche regole di inferenza. L’incompletezza e l’indecidibilità furono uno dei passi nella soluzione della crisi e in questo senso, i teoremi di Gödel e di Church gettano una luce completamente nuova sui “problemi difficili della matematica”. 
La crisi dei fondamenti è la dimostrazione che i momenti più importanti dell’evoluzione della matematica nei secoli sono quelli nei quali la travolgente potenza della verità costringe gli uomini matematici a cambiare rotta e ogni rinuncia al mondo vecchio non è mai stata altro che la conquista di un mondo nuovo.
 
COMMENTO:
Libro semplice e curioso. Può andar bene anche per “palati” poco abituati a discorsi filosofici e logici.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:24

Le menzogne di Ulisse

TRAMA:
La logica è lo studio del pensiero come esso si esprime attraverso il linguaggio. Nella storia della filosofia, Parmenide, per primo, ebbe alcune buone intuizioni al riguardo ed esse vennero poi sviluppate da Platone, ma soprattutto da Aristotele, con la Logica “classica”, che non viene messa in discussione fino al Novecento, avendo già raggiunto la completa maturità matematica. Per Aristotele, la logica è solo uno strumento per lo studio delle scienze, mentre per Crisippo di Soli, terzo rettore della “Prima Stoà”, la logica è una scienza autonoma ed emerge come una conquista intellettuale di prim’ordine. Con gli stoici, vengono isolate alcune regole di ragionamento, come la negazione, la congiunzione, la disgiunzione e l’implicazione. Potremmo dire che Aristotele e Crisippo furono i massimi logici dell’antichità a pari merito; per lungo tempo furono considerati in antitesi e solo successivamente ci si rese conto che le logiche proposte dai due erano in realtà due approcci complementari.
Con la Scolastica, la logica viene “usata” per dimostrare l’esistenza di Dio, ma fa un passo avanti verso il linguaggio artificiale che la caratterizza ai nostri giorni, visto che Pietro Ispano stabilisce una nomenclatura, grazie alla quale ogni sillogismo viene identificato con tre vocali.
Lullo tenta di tradurre il linguaggio naturale in quello numerico e ha il pregio di aver realizzato un meccanismo a ruote concentriche per automatizzare il pensiero, praticamente un precursore dei moderni calcolatori. Leibniz si ispira proprio a Lullo e, dopo aver abbozzato la matematica binaria, dichiara la sua intenzione di voler rendere automatico il processo mentale: “Quando sorgeranno delle controversie, non ci sarà maggior bisogno di discussione tra due filosofi di quanto ce ne sia tra due calcolatori. Sarà sufficiente, infatti, che essi prendano la penna in mano, si siedano a tavolino e si dicano reciprocamente (chiamando, se vogliono, a testimone un amico): Calculemus, Calcoliamo”.
Gorge Boole fu il primo a carpire il segreto dell’aritmetica binaria e fece uscire la logica dal campo della filosofia, per farla entrare nel campo delle scienze. Nel 1847 pubblica “L’analisi matematica della logica”, considerata l’atto di nascita, il manifesto della logica matematica. Grazie a Boole, le complesse problematiche della logica proposizionale vengono imbarazzantemente ridotte a un semplice calcolo scientifico: la negazione sostituita dalla sottrazione, la congiunzione dalla moltiplicazione e la disgiunzione dall’addizione. In altre parole dimostra che è possibile realizzare il sogno di Leibniz, anche se la sua logica ha il limite di essere un’efficiente riformulazione algebrica della logica di Aristotele e Crisippo. Praticamente, non aggiunge nulla di nuovo.
Frege tenta di ridurre la matematica alla logica, con un programma ambizioso da sviluppare in più tappe, ma la lettera di Bertrand Russell, nella quale lo stesso gli parla del paradosso che ha trovato nel sistema, interrompe il suo lavoro. Wittgenstein ritiene, invece, di aver realizzato la “soluzione finale” del problema della logica, ma si renderà conto dopo non molto tempo di aver sbagliato. Hilbert scrive i “Fondamenti della Geometria”, ma la scoperta di Gauss, Lobacevskij e Bolyai della geometria iperbolica ingenera la sfiducia nella geometria euclidea e conferma David Hilbert nella sua idea di ridurre la geometria all’analisi. 
Lo scossone all’intero sistema viene dato da Kurt Gödel, il cui lavoro viene considerato il contributo più importante che la logica matematica abbia mai ricevuto. Con il Teorema di incompletezza, distrugge il programma di Hilbert, presentato al Congresso Internazionale di Matematica di Parigi nel 1900, perché dimostra che la matematica non è riducibile alla logica. Dopo di lui, Alan Turing, dopo aver contribuito alla vittoria della Seconda Guerra Mondiale con la decodificazione dei messaggi di Enigma e dopo aver dimostrato che sistemi matematici e programmi informatici sono in realtà due aspetti di una stessa realtà algoritmica, dimostra, contemporaneamente con Church, l’indecidibilità della logica.
 
COMMENTO:
Un libro non facile, ma molto coinvolgente. Richiede una grande concentrazione, ma alla fine lascia un segno profondo. La natura della logica è presentata fin nella sua profondità, non solo attraverso il suo sviluppo, ma anche attraverso le vite dei personaggi che l’hanno fatta diventare ciò che conosciamo.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:17

Zero

TRAMA:
I matematici non parlano di numeri, ma di nessi e i numeri acquistano così sempre maggiore evanescenza. Con lo zero la questione si ingarbuglia ancora di più, visto che i nomi designano qualcosa, ma zero designa niente, esprime la quantità di quel che non c’è. Per questo l’itinerario temporale e concettuale dello zero è pieno di complicazioni e traversie. 
Contare, in fondo, significa associare specifici sostantivi numerici e simboli a raccolte di oggetti di vario tipo e ben presto in tutte le culture si riunirono gli oggetti che si desiderava contare in gruppi della medesima grandezza, per contare i gruppi invece degli oggetti. Con i numeri romani la rappresentazione restava goffa, ma già ai tempi dei Babilonesi possiamo trovare le tracce ancora rudimentali, con un semplice doppio cuneo, dello zero attuale. Non c’è traccia di zero nella Grecia omerica e classica e neppure in epoca alessandrina. Non c’era la notazione posizionale e le difficoltà di calcolo erano grandi, tanto più che i primi Greci non avevano portato a termine il processo di astrazione dei numeri da ciò che servivano a contare. È probabile che solo con Alessandro Magno i Greci abbiano scoperto la funzione decisiva dello zero nei calcoli, quando nel 331 a.C. invasero ciò che restava dell’impero babilonese. Infatti, nei loro papiri astronomici del III secolo a.C. troviamo il simbolo «0» a indicare lo zero.
Esso però non era ancora un numero: era usato come noi usiamo la punteggiatura. D’altra parte, il calcolo non godeva di molto prestigio sulle sponde dell’Egeo. Era chiamato «logistica» e lasciato ai mercanti: la passione dei Greci per la matematica era rivolta in larga misura alla geometria e i mercanti, lasciati a se stessi, si consolarono con l’abaco. Kaplan è convinto che proprio nell’abaco ci sia l’origine dello zero come lo conosciamo oggi: è verosimile che i sassolini spesso usati fossero tondeggianti; perciò sarebbe stato naturale rappresentarli nella scrittura e nei disegni con cerchietti pieni, che diventano cerchietti vuoti nel momento in cui sulla colonna non c’era nemmeno un contrassegno. 
È innegabile l’influenza che la cultura greca ebbe su quella indiana: la presenza dei semi di papavero nella sequenza di Archimede e nel racconto sul Buddha non può essere fortuita. Aryabhata, Varahamihira, Brahmagupta… tutti avevano un loro modo di indicare lo zero, con sinonimi che lo collocano più nella ragione discorsiva che in quella matematica. 
Nel 950, nella Spagna moresca, troviamo figure arabe particolari: sono i numeri da 1 a 9, senza lo zero. Questi numeri sono circondati da sciami di puntini che indicano il loro posto-valore: se sul numerale non c’è nessun puntino, è un’unità; se ce n’è uno, si tratta di una decina; se ce ne sono due, di un centinaio, e così via. Sono punti pieni e, benché piccoli, funzionano quasi come zeri nella numerazione posizionale.
Dobbiamo ancora vedere lo zero trattato come un numero: esso era una «condizione transitoria di una parte di tavoletta per calcoli». Il fatto è che qualunque cosa può essere un numero, purché si dimostri capace di socializzare con ciò che è già considerato tale: lo zero doveva poter essere sommato, sottratto e impiegato in moltiplicazioni e divisioni. 
Indipendentemente dalla cultura greca o da quella indiana, anche i Maya avevano il loro simbolo di zero: un uomo tatuato adorno di collana e con la testa piegata all’indietro. Mentre la cultura Maya agonizzava, i mercanti arabi trasportavano merci esotiche, racconti e tecniche in ogni dove. Furono forse mercanti arabi sulla via delle spezie e dell’avorio a portare lo zero in Cina. L’origine indiana dello zero cinese è rivelata non solo dalle sue forme, ma anche dall’ideogramma corrispondente, che alludeva alle ultime, rare gocce di acqua dopo un temporale. 
Di certo lo zero giunse in Occidente non più tardi del 970, ma la superstizione spinse i timorati di Dio a evitarlo, attirandogli le simpatie di coloro che sentivano il fascino dell’occulto. I numerali arabi facevano fatica ad imporsi, come dimostra il fatto che nel 1299 a Firenze il Consiglio cittadino emanò un’ordinanza che dichiarava illegale l’uso dei numeri nei libri contabili: le somme andavano indicate in parole, perché lo zero poteva essere facilmente mutato in 6 o 9. 
Fibonacci, nel 1202, pubblicò il Liber Abaci, nel quale parlava dei numerali arabi, da lui giudicati il miglior strumento di calcolo in cui si fosse imbattuto. Non si limitò a descriverne il sistema, ma da vero matematico si divertì a esplorarne le possibilità. Ma parlava di nove cifre indiane e del segno zero. 
I numerali arabi avanzavano in modo discontinuo, aiutati anche dall’invenzione della contabilità a partita doppia. Al tempo di Luca Pacioli, i numerali romani erano usati soprattutto per le date e per conferire solennità ai documenti, ma il modo in cui le somme erano archiviate era diverso da quello in cui erano ottenute.
Senza dare nell’occhio lo zero entrò nel Rinascimento insieme ai numerali arabi e si rese indispensabile ai nostri calcoli. John Napier, barone di Merchiston presso Edimburgo, ponendo le equazioni simili uguali a zero, ideò un metodo di soluzione valido per tutte. Ci voleva un tocco di genialità per pensare di utilizzare lo zero in questo modo. 
Nel XVII secolo, l’atteggiamento verso le equazioni stesse stava cambiando: si cominciavano a mettere a fuoco problemi di moto. Fra coloro che ragionavano per infinitesimi, due uomini giunsero allo stesso risultato quasi contemporaneamente: Isaac Newton e Gottfried Wilhelm Leibniz. Fu però soltanto alla fine del XIX secolo che in Francia e in Germania fu elaborata un’interpretazione del problema che sembrava finalmente soddisfacente. 
Ciò che nacque col calcolo infinitesimale non fu solo un modo di afferrare e controllare lo spettacolo del cambiamento, ma una nuova percezione della sede del significato. Il problema 0/0 fu finalmente risolto, anche se solo nel contesto delle pendenze: negli altri casi la divisione per zero rimane impossibile.
Il più grande trionfo dello zero nella sua opera di espansione della nostra conoscenza si ha grazie al calcolo infinitesimale: lo zero possiede la chiave per farci compiere la maggior parte delle imprese e con il minimo sforzo. Perché lo zero? Perché il valore della variabile nel punto in cui la funzione derivata si azzera è il numero che massimizza o minimizza il processo. 
Dove troviamo lo zero in natura? Non lo possiamo trovare nell’universo, colmo di radiazioni invisibili, non lo troviamo nelle campane di vetro, nonostante il lavoro di generazioni di ricercatori ci abbia portato sempre più vicini alla meta. Se siamo alla ricerca di uno zero all’interno della realtà fisica, non lo troveremo nemmeno nel tempo e neppure nel centro inerte delle cose. Lo zero può trovarsi nelle leggi, nelle relazioni fra le cose: ma esse non sono cose, non sono entità che esistono nella realtà e quindi nemmeno gli zeri che esse implicano sono realtà. 
Lo zero non è né positivo né negativo, anche se ci appare negativo quando pensiamo al suo significato metaforico: quanti zero scopriamo di aver incontrato nella nostra vita e persino di aver deriso! Oppure ci appare positivo se lo pensiamo come il vivere con umiltà: ridurre se stessi a zero, umiliando il proprio orgoglio. 
Dopo aver percorso la storia dello zero, le sue incarnazioni matematiche, fisiche e psicologiche, Kaplan conclude con il sistema binario, scoperto da Napier nel 1616, grazie al quale funzionano le nostre calcolatrici: tutti i numeri derivano da combinazioni di 0 e 1. Ma si può fare di più: von Neumann riconosce lo zero nell’insieme vuoto e da esso ricava tutti gli altri numeri. Esattamente come Pierce, filosofo americano, che nel 1880 fa discendere l’intera logica dalla negazione della verità. 
Davvero «Il nulla avrà origine dal nulla» come afferma il Lear shakespeariano?
 
COMMENTO:
A tratti complesso, ma nell’insieme scorrevole, il libro offre un’ottima panoramica della storia, non solo matematica, dello zero. Non è forse adatto a studenti delle superiori, visti alcuni passaggi un po’ complessi, anche se dal punto di vista matematico non presenta calcoli complessi o formule incomprensibili.
Pubblicato in Libri
Etichettato sotto
Pagina 26 di 28

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy