Visualizza articoli per tag: matematica

Giovedì, 01 Agosto 2013 07:06

La matematica del Novecento

TRAMA:
La trattazione della matematica moderna non è cosa facile, a causa della sua notevole astrazione, dell’esplosione produttiva che ha investito il XX secolo e della sua suddivisione in sottodiscipline sempre più numerose. La scelta di Odifreddi nella trattazione è stata quella di dare rilievo ai vincitori della medaglia Fields o del premio Wolf e ai problemi di Hilbert, ma questi non esauriscono le numerose scoperte del XX secolo.
I FONDAMENTI – La matematica porta alla luce oggetti e concetti che, al loro primo apparire, sono inusuali e non familiari. Un atteggiamento tipico, fin dai tempi dei Greci, è stato il tentativo di limitare sorpresa e disagio il più possibile, scaricando il peso dell’edificio della matematica su solide fondamenta. Nel secolo VI a.C. i Pitagorici posero a fondamento della matematica l’aritmetica dei numeri interi e razionali, poi fu la volta della geometria e successivamente dell’analisi. Nel secolo XIX il cerchio si chiuse e l’analisi fu ridotta a sua volta all’aritmetica. Ma il processo di costruzione e decostruzione non si fermò qui. La caratteristica essenziale delle nuove fondazioni è che esse si basano non più sugli oggetti classici della matematica, ma su concetti completamente nuovi.
Negli anni ’20, gli insiemi sembrarono un buon fondamento per la matematica; negli anni ’40, un gruppo di matematici francesi, Bourbaki, trovò una soluzione in un’analisi non più logica ma strutturale; negli anni ’60, si arriva al concetto di categoria, che contiene come casi particolari sia gli insiemi che le strutture. Nessuno dei tre approcci è però soddisfacente dal punto di vista degli informatici, che hanno trovato una fondazione alternativa nel Lambda Calcolo proposto da Church. 
MATEMATICA PURA – Per millenni la storia della matematica è stata la storia dei progressi nella conoscenza di entità numeriche e geometriche. Negli ultimi secoli invece e soprattutto nel XX sec. sono venute alla luce nuove e disparate entità, che hanno acquistato una loro indipendenza, e ispirato quella che è stata chiamata una nuova età dell’oro della matematica. Se, da un lato, la matematica moderna è dunque il prodotto di uno sviluppo che affonda le sue radici in problematiche concrete e classiche, dall’altro essa è anche la testimonianza di un’attività che trova la sua espressione in costruzioni astratte e contemporanee.
MATEMATICA APPLICATA – Le applicazioni della matematica hanno costituito una caratteristica costante della sua storia e ciascuna branca della matematica classica è stata, ai suoi inizi, stimolata da problemi pratici. La matematica del secolo XX in questo non fa eccezione. Alcune di queste motivazioni derivano da aree scientifiche la cui fertilità è sperimentata, quali la fisica; altre motivazioni derivano invece da aree che solo nel secolo XX sono diventate scientifiche, come l’economia e la biologia.
MATEMATICA AL CALCOLATORE – Il calcolatore sta cambiando sostanzialmente la vita quotidiana, non solo dell’uomo comune, ma anche del matematico. 
La prima applicazione matematica della nuova macchina fu, naturalmente, l’utilizzo dei suoi poteri computazionali. È però nella matematica applicata che gli usi del calcolatore stanno provocando gli effetti più visibili. L’utilizzo del calcolatore ha permesso di risolvere lo studio dei sistemi dinamici, portando alla nascita della teoria del caos, ma non si possono certo tacere gli sviluppi della grafica computerizzata: con l’ausilio visivo, sono state scoperte nuove superfici e le immagini più note sono quelle dei frattali. 
PROBLEMI INSOLUTI – La matematica è sostanzialmente un’attività di proposta e di soluzione di problemi e la loro scorta è inesauribile, anche perché le soluzioni ne pongono spesso di nuovi. I matematici ritengono comunque che i problemi che essi si pongono non soltanto siano risolubili, ma anche che saranno, prima o poi, effettivamente risolti. Una soluzione accettabile di un problema matematico può essere anche una dimostrazione della sua insolubilità. Naturalmente, soluzioni negative punteggiano l’intera storia della matematica, ma è stato nel secolo XX che il fenomeno ha raggiunto massa critica, anche grazie alla sua chiarificazione attraverso il teorema di Gödel.
 
COMMENTO:
Libro interessante, anche se non di facile lettura, soprattutto se non si ha una buona preparazione in matematica. Sarebbe bene seguire l'indicazione dell'autore, che suggerisce di leggere il libro due volte: in effetti, con una seconda lettura, è possibile ottenere una migliore visione d'insieme e capire i collegamenti che vengono fatti. Inoltre, pregevole il fatto che il libro si presti ad una lettura non necessariamente lineare: si può infatti scegliere di leggere il libro solamente "piluccando" quelli che sembrano i paragrafi più interessanti. 
Su tutto, vorrei ricordare l'ottima prefazione di Gian Carlo Rota, interessante e divertente, che offre uno spaccato della matematica un po' diverso da quello cui ci hanno abituato a scuola.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:03

Matematica da tasca

TRAMA:
Ma chi l’ha detto che la matematica è una materia noiosa, arida, difficile, astratta? Renderla divertente, stimolante, piena di fascino e persino poetica è lo scopo di questa raccolta di “storie matematiche” che si propone di spiegare ai non addetti ai lavori problemi fondamentali e non dell’universo matematico e logico. Due pagine per affrontare ogni argomento: si parte dal funzionamento dell’abaco per arrivare al calcolo delle probabilità, passando per il teorema di Fermat, il paradosso di Achille e la tartaruga, l’antinomia di Russell, le bolle di sapone, la quadratura del cerchio e i solidi platonici. 
E Beutelspacher non dimentica, con un tocco di umorismo, di metter in luce anche alcuni limiti e testardaggini inutili della matematica come il laborioso tentativo di dimostrare quale sia la disposizione migliore per una catasta di arance, cosa che tutti i fruttivendoli sanno dalla notte dei tempi. Piccoli assaggi di “pensiero” logico e matematico per tutti i palati.
 
COMMENTO:
Sicuramente adatto agli alunni, soprattutto a quelli che hanno poca voglia di leggere, visto che il libro è poco impegnativo, ma molto scorrevole e rapido… si presta anche per piccoli assaggi in tempi diversi, visti i brevi capitoli, indipendenti gli uni dagli altri.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 07:02

Da Pitagora a Borges

TRAMA:
In questa discussione, Citrini compare mentre sta sonnecchiando davanti al computer, in un’afosa giornata di luglio, cercando di organizzare del materiale sull’infinito, raccolto alla rinfusa. Ad un certo punto, compare un messaggio nella posta elettronica, nonostante il computer non sia connesso alla rete: è Omero che interviene nel suo monologo interiore, con un messaggio e-mail. 
Comincia così una chat con l’Aldilà, alla quale partecipano numerosi personaggi. Gli scambi sono sempre regolati da Maria Gaetana Agnesi, che funge da moderatrice, anche se non sempre riesce a tenere a bada coloro che intervengono. Come alla fine del penultimo capitolo, quando Peano distrugge il proprio computer sfondandolo, forse con un’ascia.
 
COMMENTO:
Interessante, anche se a volte complesso, a causa anche delle numerose citazioni, spesso in lingua originale e senza alcuna traduzione. In generale scorrevole e anche per non addetti ai lavori, nonostante alcuni passaggi possano risultare un po’ ostici per chi è digiuno di matematica.
Pubblicato in Libri
Etichettato sotto
Giovedì, 01 Agosto 2013 06:58

Matematica sulle barricate

TRAMA:
Il 25 ottobre 1811, nasce Evariste Galois. È importante specificare che, al tempo della sua nascita, domina in Francia Napoleone Bonaparte: la vita e la morte di Evariste Galois saranno strettamente connesse alle vicende storiche della Francia.
Il 3 maggio 1814, Luigi XVIII torna a Parigi e, dopo la parentesi dei 100 giorni, l’8 luglio si attua la Restaurazione Borbonica; nello stesso periodo, Nicholas-Gabriel, padre di Evariste, diventa sindaco della cittadina di Bourg-la-Reine. È proprio durante il periodo del Terrore Bianco, con il massacro di centinaia di bonapartisti, che ha luogo l’assassinio dell’unico erede al trono. Il 16 settembre muore Luigi XVIII e gli succede Carlo X.
Nell’estate del 1826, il liceo Louis-le-Grand, che Evariste ha cominciato a frequentare nel 1823, ha un nuovo direttore, Laborie, che ritiene Galois troppo giovane per frequentare già la classe di Rhétorique: dopo una lunga controversia con la famiglia, a gennaio Evariste viene retrocesso. Per assurdo, è proprio grazie a questa retrocessione che Evariste scopre il suo amore per la matematica. Nel giugno del 1828 sostiene il primo esame per l’ammissione all’Ecole Polytechnique, ma viene bocciato. La primavera del 1829 è il periodo più felice della vita di Galois: le sue idee in matematica sono sempre più chiare e scrive due memorie, che grazie all’intervento del professor Richard, nel maggio dello stesso anno saranno presentate a Cauchy.
Il 2 luglio Nicholas-Gabriel si suicida, a seguito della campagna di diffamazione promossa dal parroco del paese e da un assessore, che ritenevano il padre di Evariste troppo liberale. Nell’agosto dello stesso anno, precipita anche la situazione sul fronte nazionale: Carlo X opera un colpo di stato.
A seguito delle difficoltà economiche sopraggiunte dopo la morte del padre e della seconda bocciatura all’esame di ammissione all’Ecole Polytechnique, Galois sostiene gli esami per essere ammesso all’Ecole Préparatoire, per diventare insegnante: il 20 febbraio 1830 firma il documento con il quale si impegna al servizio dell’istruzione pubblica per i successivi dieci anni.
In maggio, partecipa al Grand Prix de Mathématiques indetto dall’Accademia, ma Fourier, che si era portato a casa il suo manoscritto, muore il 16 maggio: il manoscritto non viene più ritrovato e Galois viene escluso dal premio. Nello stesso periodo compaiono tre sue note sul Bullettin de Férrussac, rivista che accoglieva solo articoli di scrittori noti.
Nel corso delle Tre Gloriose (fine luglio), Guigniault, direttore dell’Ecole Préparatoire, vieta agli studenti di lasciare la scuola per partecipare alla rivolta, ma poi mette i propri studenti a disposizione del Governo Provvisorio, quando l’opposizione destituisce Carlo X. Il 9 agosto, Luigi Filippo I, duca di Orléans, sale al potere. Nell’estate del 1830, Galois entra a far parte della Societé des Amis du Peuple e il contrasto con Giugniault, dovuto all’atteggiamento di quest’ultimo durante le Tre Gloriose, porta Evariste, in dicembre, all’espulsione dalla scuola. Si arruola così nella Guardia Nazionale, proprio nel momento in cui Luigi Filippo scioglie la Guardia Nazionale: diciannove artiglieri si ribellano e vengono arrestati. 
Il 16 gennaio del 1831, Galois presenta una nuova introduzione per la propria memoria all’Accademia, ma nemmeno questa ha un seguito. Intanto avviene il processo dei diciannove, che si conclude il 16 aprile con un verdetto di assoluzione. Il 9 maggio la Societé des Amis du Peuple organizza un banchetto, al quale partecipa anche Galois, nel corso del quale egli stesso fa un brindisi, “A Luigi Filippo!”, mentre con una mano alza un bicchiere colmo di vino e con l’altra brandisce, minacciosamente, un coltello a serramanico. Verrà incarcerato per questo e, al processo del 15 giugno, si perviene a un verdetto di assoluzione, grazie alla tesi della difesa, secondo la quale il banchetto era privato.
Successivamente, Galois rende pubblica la trascuratezza dell’Accademia e il 4 luglio, Lacroix e Poisson, incentivati a visionare le sue memorie, esprimono un giudizio negativo. Il 14 luglio, durante i festeggiamenti per l’anniversario della presa della Bastiglia, Galois viene arrestato per porto illegale di uniforme e di armi proibite: resterà nel carcere di Sainte-Pélagie fino al 29 aprile del 1832. Durante la carcerazione, scoppia un’epidemia di colera e, per questo motivo, i più cagionevoli di salute e i più giovani ospiti del carcere, vengono trasferiti in una casa di salute: tra di essi c’è Galois, che, grazie a questo trasferimento, conosce Stéphanie, della quale si innamora. Ma non è corrisposto.
Ai primi di maggio del 1832, la duchessa di Berry rientra in Francia: è la madre del legittimo erede al trono. La Societé des Amis du Peuple si riunisce il 17 maggio: sarebbe bene scatenare una rivolta per far sentire Luigi Filippo I tra due fuochi e ottenere maggiore libertà. Servirebbe un cadavere per scatenare la rivolta. Galois offre il proprio corpo: organizza un duello, prepara delle lettere, perché questo duello risulti credibile e il 30 maggio viene ferito. Muore di peritonite il 31 maggio. Il primo giugno, la Societé si riunisce per prendere accordi per organizzare il funerale di Galois, ma la morte del generale Lamarque, appena successa, viene preferita come occasione per scatenare la rivolta. La morte di Galois è stata inutile. 
La memoria di Galois verrà pubblicata solo quattordici anni dopo la sua morte e costituisce il fondamento dell’algebra moderna.
 
COMMENTO:
Molto interessante questa teoria sulla morte di Galois. Inquadrato molto bene storicamente, il libro può appassionare anche gli storici, senza che abbiano alcuna nozione matematica. La sfortunata vicenda umana di Galois non può che coinvolgere anche a livello emotivo.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:25

Perché la matematica

TRAMA:
Il libro comincia con un paradosso: “La matematica dimora nel cuore dell’uomo, ma in questa casa è straniera”. La seconda parte dell’enunciato è una verità quasi evidente, basta notare che di fronte alla domanda: “Scusi, per lei cosa è la matematica?” si ottengono, per la maggior parte, reazioni di smarrimento e imbarazzo. Per dimostrare la prima parte dell’enunciato, invece, bisogna innanzi tutto definire la matematica. La scienza in generale è l’insieme di tutte le teorie, caratterizzate da coerenza, uniformità degli argomenti trattati, verità delle proposizioni elencate. La matematica è l’insieme di tutte le teorie per le quali i procedimenti di verificazione non richiedono l’esperienza, anche se bisogna sottolineare che l’esperienza non è estranea ai processi di formazione. La matematica non è solo una tecnica, ma una forma completa e autonoma di conoscenza.
Il metodo caratteristico di cui si avvale la matematica per raggiungere la sua verità è il metodo assiomatico-deduttivo: infatti, dimostrare un teorema significa far vedere, con una serie di ragionamenti, che esso non è che una conseguenza degli assiomi. Fino al XIX secolo, gli assiomi erano considerati come sentenze inoppugnabili a causa della loro grande evidenza, ma i moderni sistemi di assiomi sono slegati dalla realtà e gli oggetti matematici sono involucri contenenti certe cariche di comportamenti logici. Tutto ciò fece affermare a Russell che la matematica è quella scienza nella quale non si sa di che cosa si parla e non si sa se ciò che si dice è vero.
La matematica ha molteplici applicazioni: è il linguaggio naturale della fisica, ma serve anche per lo studio dei fenomeni sociali. Essa si serve della logica, un codice che garantisce l’oggettività del linguaggio. Aristotele sembra essere stato il primo pensatore ad occuparsi dello studio sistematico delle leggi dell’inferenza logica, della quale la matematica era considerata un capitolo. Ma l’origine di tutti i guai sono stati gli Elementi di Euclide. In quest’opera compaiono cinque assiomi: i primi quattro evidenti e semplicissimi, il quinto no, ha tutta l’aria di essere un teorema. Nel XVIII secolo, Saccheri sviluppa una geometria con cinque assiomi: i primi quattro corrispondono a quelli di Euclide, il quinto è la negazione del quinto degli Elementi. Saccheri era convinto che sarebbe giunto ad una contraddizione, ma i risultati cui perviene sono mostruosi unicamente nella misura in cui contraddicono l’intuizione. Se si ammette che gli assiomi si riferiscono ad una “realtà”, Saccheri ha raggiunto il suo scopo, ma più avanti Bolyai e Lobatchewsky arrivarono, per questa strada, alla scoperta delle geometrie non euclidee. Si arrivò a dimostrare che le geometrie non euclidee e la geometria euclidea sono così legate, che una eventuale contraddizione delle une avrebbe potuto dare luogo ad una contraddizione anche nell’altra.
Hilbert e Study successivamente dimostrarono che è possibile trasformare ogni teorema di geometria euclidea in un corrispondente teorema di aritmetica. Perciò i matematici decisero di salvare l’aritmetica dalla contraddizione, radicandola nella logica. Verso il 1870, Frege pose mano a questa titanica impresa, ma Russell scoprì nel suo lavoro almeno una proposizione legittima eppure autocontraddittoria e rase al suolo la dottrina che pretendeva di eliminare a priori non solo le proprie contraddizioni, ma anche quelle delle dottrine vassalle, come l’aritmetica.
Fu ancora Russell a indicare la strada giusta per il superamento della crisi dei fondamenti, istituendo una teoria che stabilisce un certo insieme di proibizioni nella composizione delle frasi. La via giusta per uscire dalla crisi era quella di adoperare la matematica per giustificare la logica e non viceversa. Le risposte vennero trovate in pochi decenni, attraverso i lavori di molti ricercatori: si isolarono tutte le regole grammaticali del linguaggio matematico e vennero scritti simbolicamente gli assiomi della logica, per il cui uso vennero fissate poche regole di inferenza. L’incompletezza e l’indecidibilità furono uno dei passi nella soluzione della crisi e in questo senso, i teoremi di Gödel e di Church gettano una luce completamente nuova sui “problemi difficili della matematica”. 
La crisi dei fondamenti è la dimostrazione che i momenti più importanti dell’evoluzione della matematica nei secoli sono quelli nei quali la travolgente potenza della verità costringe gli uomini matematici a cambiare rotta e ogni rinuncia al mondo vecchio non è mai stata altro che la conquista di un mondo nuovo.
 
COMMENTO:
Libro semplice e curioso. Può andar bene anche per “palati” poco abituati a discorsi filosofici e logici.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:24

Le menzogne di Ulisse

TRAMA:
La logica è lo studio del pensiero come esso si esprime attraverso il linguaggio. Nella storia della filosofia, Parmenide, per primo, ebbe alcune buone intuizioni al riguardo ed esse vennero poi sviluppate da Platone, ma soprattutto da Aristotele, con la Logica “classica”, che non viene messa in discussione fino al Novecento, avendo già raggiunto la completa maturità matematica. Per Aristotele, la logica è solo uno strumento per lo studio delle scienze, mentre per Crisippo di Soli, terzo rettore della “Prima Stoà”, la logica è una scienza autonoma ed emerge come una conquista intellettuale di prim’ordine. Con gli stoici, vengono isolate alcune regole di ragionamento, come la negazione, la congiunzione, la disgiunzione e l’implicazione. Potremmo dire che Aristotele e Crisippo furono i massimi logici dell’antichità a pari merito; per lungo tempo furono considerati in antitesi e solo successivamente ci si rese conto che le logiche proposte dai due erano in realtà due approcci complementari.
Con la Scolastica, la logica viene “usata” per dimostrare l’esistenza di Dio, ma fa un passo avanti verso il linguaggio artificiale che la caratterizza ai nostri giorni, visto che Pietro Ispano stabilisce una nomenclatura, grazie alla quale ogni sillogismo viene identificato con tre vocali.
Lullo tenta di tradurre il linguaggio naturale in quello numerico e ha il pregio di aver realizzato un meccanismo a ruote concentriche per automatizzare il pensiero, praticamente un precursore dei moderni calcolatori. Leibniz si ispira proprio a Lullo e, dopo aver abbozzato la matematica binaria, dichiara la sua intenzione di voler rendere automatico il processo mentale: “Quando sorgeranno delle controversie, non ci sarà maggior bisogno di discussione tra due filosofi di quanto ce ne sia tra due calcolatori. Sarà sufficiente, infatti, che essi prendano la penna in mano, si siedano a tavolino e si dicano reciprocamente (chiamando, se vogliono, a testimone un amico): Calculemus, Calcoliamo”.
Gorge Boole fu il primo a carpire il segreto dell’aritmetica binaria e fece uscire la logica dal campo della filosofia, per farla entrare nel campo delle scienze. Nel 1847 pubblica “L’analisi matematica della logica”, considerata l’atto di nascita, il manifesto della logica matematica. Grazie a Boole, le complesse problematiche della logica proposizionale vengono imbarazzantemente ridotte a un semplice calcolo scientifico: la negazione sostituita dalla sottrazione, la congiunzione dalla moltiplicazione e la disgiunzione dall’addizione. In altre parole dimostra che è possibile realizzare il sogno di Leibniz, anche se la sua logica ha il limite di essere un’efficiente riformulazione algebrica della logica di Aristotele e Crisippo. Praticamente, non aggiunge nulla di nuovo.
Frege tenta di ridurre la matematica alla logica, con un programma ambizioso da sviluppare in più tappe, ma la lettera di Bertrand Russell, nella quale lo stesso gli parla del paradosso che ha trovato nel sistema, interrompe il suo lavoro. Wittgenstein ritiene, invece, di aver realizzato la “soluzione finale” del problema della logica, ma si renderà conto dopo non molto tempo di aver sbagliato. Hilbert scrive i “Fondamenti della Geometria”, ma la scoperta di Gauss, Lobacevskij e Bolyai della geometria iperbolica ingenera la sfiducia nella geometria euclidea e conferma David Hilbert nella sua idea di ridurre la geometria all’analisi. 
Lo scossone all’intero sistema viene dato da Kurt Gödel, il cui lavoro viene considerato il contributo più importante che la logica matematica abbia mai ricevuto. Con il Teorema di incompletezza, distrugge il programma di Hilbert, presentato al Congresso Internazionale di Matematica di Parigi nel 1900, perché dimostra che la matematica non è riducibile alla logica. Dopo di lui, Alan Turing, dopo aver contribuito alla vittoria della Seconda Guerra Mondiale con la decodificazione dei messaggi di Enigma e dopo aver dimostrato che sistemi matematici e programmi informatici sono in realtà due aspetti di una stessa realtà algoritmica, dimostra, contemporaneamente con Church, l’indecidibilità della logica.
 
COMMENTO:
Un libro non facile, ma molto coinvolgente. Richiede una grande concentrazione, ma alla fine lascia un segno profondo. La natura della logica è presentata fin nella sua profondità, non solo attraverso il suo sviluppo, ma anche attraverso le vite dei personaggi che l’hanno fatta diventare ciò che conosciamo.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:17

Zero

TRAMA:
I matematici non parlano di numeri, ma di nessi e i numeri acquistano così sempre maggiore evanescenza. Con lo zero la questione si ingarbuglia ancora di più, visto che i nomi designano qualcosa, ma zero designa niente, esprime la quantità di quel che non c’è. Per questo l’itinerario temporale e concettuale dello zero è pieno di complicazioni e traversie. 
Contare, in fondo, significa associare specifici sostantivi numerici e simboli a raccolte di oggetti di vario tipo e ben presto in tutte le culture si riunirono gli oggetti che si desiderava contare in gruppi della medesima grandezza, per contare i gruppi invece degli oggetti. Con i numeri romani la rappresentazione restava goffa, ma già ai tempi dei Babilonesi possiamo trovare le tracce ancora rudimentali, con un semplice doppio cuneo, dello zero attuale. Non c’è traccia di zero nella Grecia omerica e classica e neppure in epoca alessandrina. Non c’era la notazione posizionale e le difficoltà di calcolo erano grandi, tanto più che i primi Greci non avevano portato a termine il processo di astrazione dei numeri da ciò che servivano a contare. È probabile che solo con Alessandro Magno i Greci abbiano scoperto la funzione decisiva dello zero nei calcoli, quando nel 331 a.C. invasero ciò che restava dell’impero babilonese. Infatti, nei loro papiri astronomici del III secolo a.C. troviamo il simbolo «0» a indicare lo zero.
Esso però non era ancora un numero: era usato come noi usiamo la punteggiatura. D’altra parte, il calcolo non godeva di molto prestigio sulle sponde dell’Egeo. Era chiamato «logistica» e lasciato ai mercanti: la passione dei Greci per la matematica era rivolta in larga misura alla geometria e i mercanti, lasciati a se stessi, si consolarono con l’abaco. Kaplan è convinto che proprio nell’abaco ci sia l’origine dello zero come lo conosciamo oggi: è verosimile che i sassolini spesso usati fossero tondeggianti; perciò sarebbe stato naturale rappresentarli nella scrittura e nei disegni con cerchietti pieni, che diventano cerchietti vuoti nel momento in cui sulla colonna non c’era nemmeno un contrassegno. 
È innegabile l’influenza che la cultura greca ebbe su quella indiana: la presenza dei semi di papavero nella sequenza di Archimede e nel racconto sul Buddha non può essere fortuita. Aryabhata, Varahamihira, Brahmagupta… tutti avevano un loro modo di indicare lo zero, con sinonimi che lo collocano più nella ragione discorsiva che in quella matematica. 
Nel 950, nella Spagna moresca, troviamo figure arabe particolari: sono i numeri da 1 a 9, senza lo zero. Questi numeri sono circondati da sciami di puntini che indicano il loro posto-valore: se sul numerale non c’è nessun puntino, è un’unità; se ce n’è uno, si tratta di una decina; se ce ne sono due, di un centinaio, e così via. Sono punti pieni e, benché piccoli, funzionano quasi come zeri nella numerazione posizionale.
Dobbiamo ancora vedere lo zero trattato come un numero: esso era una «condizione transitoria di una parte di tavoletta per calcoli». Il fatto è che qualunque cosa può essere un numero, purché si dimostri capace di socializzare con ciò che è già considerato tale: lo zero doveva poter essere sommato, sottratto e impiegato in moltiplicazioni e divisioni. 
Indipendentemente dalla cultura greca o da quella indiana, anche i Maya avevano il loro simbolo di zero: un uomo tatuato adorno di collana e con la testa piegata all’indietro. Mentre la cultura Maya agonizzava, i mercanti arabi trasportavano merci esotiche, racconti e tecniche in ogni dove. Furono forse mercanti arabi sulla via delle spezie e dell’avorio a portare lo zero in Cina. L’origine indiana dello zero cinese è rivelata non solo dalle sue forme, ma anche dall’ideogramma corrispondente, che alludeva alle ultime, rare gocce di acqua dopo un temporale. 
Di certo lo zero giunse in Occidente non più tardi del 970, ma la superstizione spinse i timorati di Dio a evitarlo, attirandogli le simpatie di coloro che sentivano il fascino dell’occulto. I numerali arabi facevano fatica ad imporsi, come dimostra il fatto che nel 1299 a Firenze il Consiglio cittadino emanò un’ordinanza che dichiarava illegale l’uso dei numeri nei libri contabili: le somme andavano indicate in parole, perché lo zero poteva essere facilmente mutato in 6 o 9. 
Fibonacci, nel 1202, pubblicò il Liber Abaci, nel quale parlava dei numerali arabi, da lui giudicati il miglior strumento di calcolo in cui si fosse imbattuto. Non si limitò a descriverne il sistema, ma da vero matematico si divertì a esplorarne le possibilità. Ma parlava di nove cifre indiane e del segno zero. 
I numerali arabi avanzavano in modo discontinuo, aiutati anche dall’invenzione della contabilità a partita doppia. Al tempo di Luca Pacioli, i numerali romani erano usati soprattutto per le date e per conferire solennità ai documenti, ma il modo in cui le somme erano archiviate era diverso da quello in cui erano ottenute.
Senza dare nell’occhio lo zero entrò nel Rinascimento insieme ai numerali arabi e si rese indispensabile ai nostri calcoli. John Napier, barone di Merchiston presso Edimburgo, ponendo le equazioni simili uguali a zero, ideò un metodo di soluzione valido per tutte. Ci voleva un tocco di genialità per pensare di utilizzare lo zero in questo modo. 
Nel XVII secolo, l’atteggiamento verso le equazioni stesse stava cambiando: si cominciavano a mettere a fuoco problemi di moto. Fra coloro che ragionavano per infinitesimi, due uomini giunsero allo stesso risultato quasi contemporaneamente: Isaac Newton e Gottfried Wilhelm Leibniz. Fu però soltanto alla fine del XIX secolo che in Francia e in Germania fu elaborata un’interpretazione del problema che sembrava finalmente soddisfacente. 
Ciò che nacque col calcolo infinitesimale non fu solo un modo di afferrare e controllare lo spettacolo del cambiamento, ma una nuova percezione della sede del significato. Il problema 0/0 fu finalmente risolto, anche se solo nel contesto delle pendenze: negli altri casi la divisione per zero rimane impossibile.
Il più grande trionfo dello zero nella sua opera di espansione della nostra conoscenza si ha grazie al calcolo infinitesimale: lo zero possiede la chiave per farci compiere la maggior parte delle imprese e con il minimo sforzo. Perché lo zero? Perché il valore della variabile nel punto in cui la funzione derivata si azzera è il numero che massimizza o minimizza il processo. 
Dove troviamo lo zero in natura? Non lo possiamo trovare nell’universo, colmo di radiazioni invisibili, non lo troviamo nelle campane di vetro, nonostante il lavoro di generazioni di ricercatori ci abbia portato sempre più vicini alla meta. Se siamo alla ricerca di uno zero all’interno della realtà fisica, non lo troveremo nemmeno nel tempo e neppure nel centro inerte delle cose. Lo zero può trovarsi nelle leggi, nelle relazioni fra le cose: ma esse non sono cose, non sono entità che esistono nella realtà e quindi nemmeno gli zeri che esse implicano sono realtà. 
Lo zero non è né positivo né negativo, anche se ci appare negativo quando pensiamo al suo significato metaforico: quanti zero scopriamo di aver incontrato nella nostra vita e persino di aver deriso! Oppure ci appare positivo se lo pensiamo come il vivere con umiltà: ridurre se stessi a zero, umiliando il proprio orgoglio. 
Dopo aver percorso la storia dello zero, le sue incarnazioni matematiche, fisiche e psicologiche, Kaplan conclude con il sistema binario, scoperto da Napier nel 1616, grazie al quale funzionano le nostre calcolatrici: tutti i numeri derivano da combinazioni di 0 e 1. Ma si può fare di più: von Neumann riconosce lo zero nell’insieme vuoto e da esso ricava tutti gli altri numeri. Esattamente come Pierce, filosofo americano, che nel 1880 fa discendere l’intera logica dalla negazione della verità. 
Davvero «Il nulla avrà origine dal nulla» come afferma il Lear shakespeariano?
 
COMMENTO:
A tratti complesso, ma nell’insieme scorrevole, il libro offre un’ottima panoramica della storia, non solo matematica, dello zero. Non è forse adatto a studenti delle superiori, visti alcuni passaggi un po’ complessi, anche se dal punto di vista matematico non presenta calcoli complessi o formule incomprensibili.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:16

Il numero

TRAMA:
CAPITOLO PRIMO – Genesi dei sistemi di numerazione
Dal contare come stabilire una corrispondenza biunivoca al contare come raggruppare: interessante la storia della nascita del numero, attraverso i sistemi di numerazione arcaici degli Egiziani, dei Babilonesi, dei Greci e dei Maya e quelli più moderni degli Indiani e degli Arabi.
 
CAPITOLO SECONDO – Sistemi posizionali di numerazione
Capitolo un po’ più complesso, dedicato allo studio delle rappresentazioni posizionali dei numeri attraverso le rappresentazioni algebriche dei codici. (interessante e curiosa la moltiplicazione araba, anche se non è spiegato il meccanismo).
 
CAPITOLO TERZO – Divisibilità e sistemi di numerazione
A partire dal teorema fondamentale dell’aritmetica, il capitolo si sviluppa con la dimostrazione della periodicità della rappresentazione dei numeri razionali in basi periodiche. Complesso dal punto di vista della comprensione: alcuni concetti sono espressi in modo eccessivamente e inutilmente complicato. In questo capitolo si fa riferimento anche al teorema di Eulero, ai numeri ciclici e ai primi di Mersenne. (curiosa la prova di divisibilità di Pascal)
 
CAPITOLO QUARTO – Numeri reali
Si comincia con il dominio di integrità dei numeri razionali, si passa attraverso il metodo assiomatico e la commensurabilità, con ampio riferimento ai pitagorici e al teorema di Pitagora. Si arriva al teorema di Fermat e alla dimostrazione dell’incommensurabilità di , oltre alla dimostrazione dell’impossibilità fisica di rappresentarla. Il capitolo si conclude con la presentazione dei tre problemi irrisolvibili dell’antichità, costruibili solamente con riga e compasso.
 
CAPITOLO QUINTO – Frazioni continue
Innanzi tutto viene presentato l’algoritmo euclideo per il calcolo del MCD interessante perché iterativo, carattere tipico proprio delle frazioni continue.
 
CAPITOLO SESTO – Fratture
A partire dal Piano di Argand, o semplicemente piano complesso, il capitolo si snoda attraverso la rappresentazione geometrica dei numeri e dei nodi primi (si definiscono anche i numeri primi gaussiani); le fratture sono un modo per rappresentare i numeri irrazionali, che nessuna retta con pendenza razionale può incontrare: ovvero è un ipotetico raggio luminoso infinitamente sottile che si propaga all’infinito senza incontrare un nodo. Nello sviluppo del capitolo viene rivisitato anche il calcolo del MCD.
 
CAPITOLO SETTIMO – Infinito 
Sicuramente il capitolo più interessante, anche se costituisce solo un assaggio dell’argomento, essendo poco sviluppato. “La strada per l’infinito è disseminata di paradossi, e occorre prestare grande attenzione quando si estrapola un ragionamento da qui a lì. Ciò può sembrare una naturale estensione di leggi e regole inerenti all’ambito della nostra più prossima sfera d’azione, in altre parole, i primi (e pochi!) numeri interi, talvolta può portare a irrisolvibili contraddizioni”. È il caso delle serie convergenti e dei paradossi sulle serie infinite, dell’Hotel Hilbert e dei paradossi di Zenone, dell’Horror infiniti dei Greci, al quale il metodo di esaustione di Eudosso si oppone. Solo Cantor parla di infinito attuale, contro l’infinito potenziale di Aristotele, solo Cantor cerca di numerare i vari tipi di infinito, di confrontarli l’uno con l’altro.
 
COMMENTO:
Libro a tratti molto difficile, inutilmente complicato laddove i calcoli avrebbero potuto essere presentati più semplicemente. Interessante e scorrevole il primo capitolo, sulla genesi dei sistemi di numerazione, facile il quarto, sui numeri reali, molto interessante il quinto, sulle frazioni continue e riduttivo il settimo, sull’infinito.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:15

La quarta dimensione

TRAMA:
Il racconto fantastico Flatlandia, pubblicato nel 1884, narra la storia di un Quadrato che intraprende un viaggio nella terza dimensione. Rucker prende spunto da questo per parlare della Quarta Dimensione, attraverso un’analogia: la terza dimensione sta alla seconda, come la quarta sta alla terza. Il libro ha come fil rouge le Nuove avventure del Quadrato: in queste Rucker immagina che il Quadrato di Flatlandia guidi il lettore alla scoperta della quarta dimensione. 
Innanzi tutto Rucker riconosce che ogni oggetto di nD divide lo spazio (n + 1)D in 2 regioni: il filosofo dell’iperspazio Hinton propone i termini anà e katà per le regioni in cui il nostro spazio 3D divide quello 4D. «Tanto per avere un riferimento, possiamo immaginare che rispetto al nostro spazio il paradiso sia anà e l’inferno katà.»
La quarta dimensione è un’idea molto giovane: risale a poco prima della metà dell’Ottocento ed il primo filosofo a parlarne seriamente fu Kant. Nel tardo Ottocento era molto diffuso lo spiritismo e per trovare una spiegazione alla capacità di manifestarsi degli spiriti, venne ipotizzato che si trovassero nella quarta dimensione. Zöllner, professore di astronomia all’Università di Lipsia, diede vera diffusione a quest’idea e si illuse anche di averla dimostrata attraverso degli esperimenti. «L’effetto principale del lavoro di Zöllner fu che la quarta dimensione cominciò ad avere una reputazione sospetta e antiscientifica.». 
Il primo a toccare in qualche modo la Quarta dimensione fu Hinton, che riuscì a «prendere un oggetto 3D e vederne le parti semplicemente in termini di “che cosa è vicino a che cos’altro”, liberandosi quindi dai nostri tipici concetti spaziali di davanti/dietro e sopra/sotto.»
Rucker rivisita i concetti di spazio e tempo: «Siamo avvezzi a pensare che l’universo sia fatto di grumi di materia fluttuanti nello spazio vuoto: la materia è qualche cosa e lo spazio è il nulla. Ma è davvero una visione corretta?» A partire dall’esperimento di Michelson e Morley del 1887, Rucker si addentra nella teoria della relatività di Einstein. Dopo aver specificato che non si può determinare la forma dello spazio, in quanto ogni nostra ipotesi parte dall’idea che la curvatura dello spazio sia una costante, mentre «lo spazio potrebbe avere una forma ben più strana di quanto crediamo», Rucker tratta poi delle porte magiche su altri mondi, oggetti che ricorrono in tutta la letteratura fantastica. 
Torniamo al mondo di Flatlandia: immaginare un universo parallelo a quello del Quadrato è semplice, basta immaginare infiniti piani paralleli. Non è difficile nemmeno immaginare una porta magica che colleghi fra loro i due universi: si può pensare ad esempio ad una specie di scivolo che colleghi fra loro i due piani. Allo stesso modo, per analogia, dovremmo riuscire ad immaginare una porta che colleghi fra loro due diversi spazi tridimensionali, per forza di cose una porta che esista nella quarta dimensione. «Che aspetto avrebbe un siffatto tunnel iperspaziale? Il suo ingresso apparirebbe come una sfera contenente un altro universo completo, incredibilmente compresso e distorto. Se vi buttaste a capofitto in questa sfera, avreste proprio la sensazione di attraversarla. Ma poi, guardandovi intorno, vi rendereste conto di trovarvi nell’altro universo e voltandovi a guardare verso il tunnel iperspaziale vedreste una sfera che sembrerebbe contenere tutto il nostro universo originale, incredibilmente compresso e distorto.» 
E per quanto riguarda il tempo? Innanzi tutto, a partire dalla teoria della relatività, si è cominciato a parlare di spazio-tempo costituito da eventi: «Un “evento” è proprio ciò che la parola esprime: un dato luogo in un dato momento.» Il tempo, in quest’ottica, potrebbe essere una delle dimensioni superiori. 
Viaggiare nel tempo darebbe luogo a paradossi assurdi, eppure è da epoche remote che gli uomini sognano di viaggiare liberamente attraverso di esso. Infatti, i viaggi nel tempo e i viaggi FTL (faster than light) «promettono l’affrancamento da tre pastoie tipiche della condizione umana. Il viaggio nel tempo ci libera dal cieco e malefico dispotismo del tempo e dalla sterile nostalgia. Il viaggio FTL ci affranca dall’ostinata tirannia della distanza fisica, dalle fastidiose necessità del viaggio effettivo. I viaggi nei mondi alternativi ci liberano dal dover occupare una data posizione nella società e dalla necessità di accettare il mondo così com’è.» In altre parole, l’esistenza di questi viaggi ci permetterebbe di cambiare radicalmente la nostra vita. 
Rucker si esprime poi contro la telepatia: molti eventi sono collegati da causa ed effetto, altri invece no, sembrano coincidenze. C.G. Jung, psicologo, introduce il termine di sincronicità proprio per descrivere questi eventi: con questo termine, infatti, designa una “connessione acausale”. 
Nell’ultimo capitolo, Rucker cerca di rispondere alla domanda “Che cos’è la realtà?”. «Se facciamo uno sforzo sincero per descrivere il mondo come veramente lo sperimentiamo, allora esso diventa infinitamente più complicato di una semplice immagine 3D. Si ha la sensazione che, quanto più ci immergiamo nella natura della realtà, tante più cose scopriamo. Lungi dall’essere limitato, il mondo è, al contrario, di una ricchezza inesauribile.»
 
COMMENTO:
Scorrevole per chi abbia già conoscenze nel campo. In ogni caso, come tutti i libri al riguardo, può sembrare ai limiti del fantascientifico (non per nulla Rucker ha scritto anche libri di fantascienza). Il libro offre un’interessante carrellata sulla storia della quarta dimensione, presentando personaggi importanti ed influenti. 
Il tutto parte dal racconto fantastico di Flatlandia, perciò è necessario aver letto prima tale racconto, altrimenti si farebbe fatica a capirlo.
Pubblicato in Libri
Etichettato sotto
Mercoledì, 31 Luglio 2013 21:14

L'uomo che vide l'infinito

TRAMA:
Ramanujan fu un eccentrico personaggio: nato in India nel 1887, si innamorò della matematica nel 1903 e, irretito dalla matematica pura, perse interesse per tutto il resto: gli venne così tolta la borsa di studio che aveva ottenuto.
La sua famiglia era ai limiti della miseria e di tanto in tanto Ramanujan pativa anche la fame. Cercò di arrangiarsi con qualche ripetizione, ma non era abile come insegnante. Cominciò a riportare i suoi appunti in alcuni quaderni che dimostrano il suo sviluppo fuori dalle convenzioni. I genitori lo sopportarono a lungo, ma alla fine si irritarono e, forse verso la fine del 1908, gli organizzarono un matrimonio combinato. 
Il 1911 fu un anno positivo e promettente: ottenne un incarico che gli permetteva di mantenersi economicamente e di dedicare tutto il tempo che voleva alla matematica. Le serie furono il primo amore di Ramanujan e furono l’argomento del suo primo articolo pubblicato sul Journal. In questo, come in tutta la sua opera, Ramanujan trovò rapporti tra cose che sembravano senza rapporto. Le dimostrazioni che dava erano abbozzate o incomplete, ma con questa pubblicazione cominciò a farsi notare. 
Gli eventi cospirarono per dirgli che sarebbe stato ascoltato con maggiore cognizione di causa dai matematici europei. Scrisse a Baker e a Hobson, ma entrambi gli risposero negativamente. Il 16 gennaio 1913, Ramanujan scrisse a un altro matematico di Cambridge, G. H. Hardy. E Hardy gli prestò ascolto. Fu la stranezza dei teoremi di Ramanujan a colpire Hardy, non la loro genialità. La lettera di risposta di Hardy era prodiga di incoraggiamenti e la carriera di Ramanujan si avviò velocemente, tanto che ricevette una borsa di studio dal Presidency College di Madras che lo rendeva libero di dedicarsi alla matematica: non aveva nient’altro da fare se non presentare un resoconto dei progressi fatti ogni tre mesi.
Con Hardy continuò il contatto epistolare, ma verso la metà di marzo la situazione rasentò la lite vera e propria. E Hardy non rispose per mesi. Nonostante questo, egli fece di tutto per portare Ramanujan in Inghilterra. Ma Ramanujan proveniva da una famiglia indù profondamente ortodossa: recarsi in Europa o in America costituiva una forma di contaminazione. Quando alla fine partì, Ramanujan attribuì la sua decisione all’ispirazione divina.
Appena arrivato in Inghilterra, Ramanujan era produttivo, lavorava sodo, era felice. Come Hardy poté verificare, alcuni suoi risultati erano sbagliati. Alcuni non erano importanti come a Ramanujan piaceva credere. Alcuni erano autonome riscoperte di ciò che i matematici occidentali avevano già scoperto anni prima. Molti, però, forse un terzo, come calcolò Hardy, o forse due terzi, come avrebbero calcolato i matematici più di recente, erano novità da mozzare il fiato.
Era stata una vera fortuna per Ramanujan finire tra le mani di Hardy, che spinse Ramanujan in accelerazione senza mettere la museruola alla sua creatività o spegnere le fiamme del suo entusiasmo. Ramanujan non aveva doveri ufficiali nell’ambito del college. Poteva immergersi nella matematica senza preoccuparsi di esigenze finanziarie, né sue né della sua famiglia. 
Probabilmente dagli inizi del 1916, fu preda di una forte tensione nervosa. Non c’era solo la guerra: c’erano momenti in cui le piccole cose famigliari della vita dell’India meridionale gli mancavano terribilmente e, tra gli inglesi, non poteva non sentirsi un estraneo, perciò si chiuse in se stesso.
Per molti aspetti Hardy era il migliore e più fedele amico che Ramanujan avesse mai avuto. Era premuroso, leale e gentile con lui, ma non erano intimi. Ramanujan viveva i suoi problemi in solitudine e conduceva una vita irregolare, non dormiva e non mangiava, tanto che finì con il minare la sua salute. Sotto la guida di Hardy era andato bene, ma non era felice. Aveva impiegato tutte le sue energie nella matematica. Perciò si spezzò. Tanto che arrivò a tentare il suicidio.
Forse per paura di arrivare tardi, Hardy lavorò per ottenere la sua nomina alla Royal Society e subito dopo ottenne l’elezione al Trinity: i riconoscimenti che gli erano stati accordati avevano risollevato lo spirito di Ramanujan.
Tornò in India nell’aprile del 1919, ma tornava in uno stato di salute alquanto precario e si ritrovò nella fossa dei serpenti della sua famiglia, una bolgia che ribolliva di risentimento. 
Per tutto l’anno trascorso in India, Ramanujan lavorò a nuove scoperte matematiche: le sue capacità intellettive si fecero in proporzione più acute e brillanti. Quattro giorni prima di morire stava ancora scarabocchiando. 
Per quanto riguarda la comunità matematica, Ramanujan continua a vivere: “Scoprì così tanto, eppure lasciò agli altri ancora tanto di più da scoprire del suo giardino” disse Dyson. 
Hardy morì nel 1947. E ancora a distanza di vent’anni, Ramanujan era rimasto parte di lui, un faro splendente, luminoso nella sua memoria. “Un uomo la cui carriera sembra piena di paradossi e contraddizioni, che sfida quasi tutti i canoni secondo i quali siamo abituati a giudicarci l’un l’altro e sul quale tutti probabilmente concorderemmo in un unico giudizio: che fu per certi versi un grandissimo matematico.”
 
COMMENTO:
Un libro interessante. Semplice anche per chi conosce poca matematica, visto che si tratta di una biografia. L’autore è riuscito, attraverso metafore e semplici esempi, a rendere l’idea del peso delle scoperte di Ramanujan. Molto scorrevole.
Pubblicato in Libri
Etichettato sotto
Pagina 23 di 24

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy