TRAMA: L’autore comincia con i numeri primi, “atomi del mondo matematico”, che trovano applicazione non solo nel campo della crittografia, come dimostra l’algoritmo RSA, ma anche in natura, come per i cicli di vita di 13 e 17 anni di due diverse specie di cicale. Interessanti le curiosità riguardanti i numeri primi circolari e le piramidi di numeri primi palindromi, ma il capitolo riguardante il triangolo di Pascal è veramente ricco di spunti: la simmetria, la sequenza dei numeri triangolari, i coefficienti dello sviluppo della potenza di un binomio, i numeri di Fibonacci… non manca nulla! Gli stessi numeri di Fibonacci sono descritti in tutte le loro caratteristiche: non sono solo elencate le proprietà che li caratterizzano, ma viene evidenziato anche il loro legame con la sezione aurea, con la tassellatura di Penrose, con la legge di Benford e con la stella variabile UW Herculis. La matematica ha anche un aspetto artistico, come dimostrano la geometria frattale e la polynomiography di Kalantari, che ci permette, attraverso l’approssimazione delle soluzioni delle equazioni algebriche, di creare disegni originali. Anche ambiti della matematica che sembrano non poter avere alcuna applicazione trovano un’utilità pratica, come dimostrato dalla teoria dei nodi, utile per capire come…