Daniela Molinari

URL del sito web: http://www.amolamatematica.it
Sabato, 05 Ottobre 2024 15:47

228 - 5 ottobre 2024

È capitato in più occasioni che qualcuno mi domandasse come riesca a trovare il tempo per la newsletter: questa è una di quelle volte in cui trovare il tempo non è stato facile ed ecco spiegato il ritardo di una settimana! Il Festival di BergamoScienza, con i laboratori gestiti dai ragazzi del nostro Istituto, ha riempito ogni vuoto, lasciando poco spazio per la newsletter. Eppure, la necessità di scrivere anche solo due righe si fa sentire: è una necessità che nasce dal bisogno di rimettere ordine fra i contenuti matematici incontrati sul web dall’ultima newsletter e, al tempo stesso, di creare una memoria, che trovi nei contenuti online una risonanza a ciò che vivo.

Succede un po’ la stessa cosa anche con il Carnevale della Matematica, che è stato ospitato il 14 settembre scorso – nella sua 180^ edizione – proprio da Amolamatematica. Ho proposto il tema dello sport, perché siamo stati tutti immersi nello sport durante la stagione estiva, grazie alle Olimpiadi. I miei alunni mi accusano di vedere la matematica ovunque, ma la verità è che… la matematica È ovunque! Quando gli atleti vengono intervistati, al termine delle gare, possiamo leggere nelle loro parole la stessa fatica richiesta per un’impresa intellettuale come la matematica. Nonostante la sua astrazione, lo studio della matematica non è così lontano dalla volontà di essere il/la più veloce nella corsa o nel nuoto, di essere quell* che arriva più in alto nella gara di salto, o quell* che fa il tuffo migliore. Insomma, una qualsiasi impresa che richieda impegno, tenacia e un lavoro continuo non può che essere associata alla matematica, per questo ho elencato le caratteristiche necessarie per una buona riuscita nello sport, abbinando ad ogni sportivo un matematico o un fisico. La risposta dei matematti non mi ha deluso: Annalisa Santi, di Matetango, ha parlato del golfista Francesco Molinari, Mauro Merlotti dalle pagine dello Zibaldone scientifico ha parlato del fotofinish e Roberto Zanasi, nel suo blog Gli studenti di oggi, ha proposto una classifica particolare delle Olimpiadi. Il tema è piaciuto poi particolarmente a Paolo Alessandrini, autore di Matematica in campo, che dopo aver coniugato in maniera eccezionale matematica e calcio nel suo libro, ha proposto parecchi contenuti anche per il carnevale. Non sono mancati i contenuti di Marco Menale, Cesco Reale, Alberto Saracco e Stefano Pisani, dalle pagine di MaddMaths!, mentre Gianluigi Filippelli, con Dropsea, ha proposto un articolo a tema Formula Uno. 

Teoremi al Cinema
Mentre la matematica mi trasportava lontano grazie alla prospettiva, mi sono ritagliata un po’ di tempo per guardare Il teorema di Margherita: è un peccato non aver avuto occasione di vederlo in sala, visto che a casa si finisce sempre con il lasciarsi distrarre da mille cose, ma è valsa la pena guardarlo su Raiplay. Il film mi è piaciuto, ma guardandolo ho toccato con mano come le cose riportate da altri (i commenti letti o ascoltati in rete dopo l’uscita del film) siano sempre viziate dal punto di vista: guardando un film, la nostra attenzione viene attratta da ciò che scatena più emozioni dentro di noi in quel momento. Io sono rimasta colpita da un particolare messo in evidenza dal film: quando una mente matematica va alla ricerca della soluzione di un problema, o della dimostrazione di un teorema, non racchiude la propria azione in un luogo e un tempo definito, ma va alla ricerca di idee, spunti e strategie, anche nella vita di tutti i giorni, come capita appunto a Margherita durante il gioco del Mah Jong

Indimenticabile topologia
Ogni partecipazione a BergamoScienza crea una nuova strada e permette approfondimenti matematici che lasciano un segno, nella mia testa. È successo con la topologia, trattata l’anno scorso (indimenticabile la nostra Conferenza senza bordi!): ha lasciato un segno tale che non potevo non guardare il video di Tom Crawford dedicato alla bottiglia di Klein. Nello stile del personaggio, l’argomento è stato trattato con grande originalità, grazie alla presenza di Moira Chas, artista e docente alla Stony Brook University. Si parte dalla presentazione classica della Bottiglia di Klein, mentre Moira non manca di sottolineare durante la spiegazione come, nei suoi scritti, Klein non parli di una bottiglia, ma di una superficie: è stato poi il traduttore a vedere una bottiglia in questa superficie e a indicarla in questo modo. Nel corso del video, Moira presenta diverse bottiglie di Klein, una a partire da un rettangolo che porta a due anelli che sembrano intrecciati tra loro e che mi hanno fatto venire voglia di riprendere in mano l’uncinetto e il filo per provare a replicarlo (sul suo sito si trovano un sacco di suggerimenti per realizzare la topologia all’uncinetto!) In tutto questo, Tom Crawford ascolta con evidente interesse e meraviglia le spiegazioni di Moira e, a un certo punto, ammette candidamente di non aver mai studiato topologia e Moira reagisce con un “mi dispiace per te!”. Un video da guardare assolutamente, soprattutto se siete alla ricerca di idee e spunti originali per lavorare con la matematica. 

Problemi sconcertanti e poliedri inaspettati
Tra i vari canali che seguo su YouTube c’è quello di Mind Your Decisions, citato già in passato, e la proposta di Presh Talwalkar in questo caso è davvero interessante. Nella formulazione del problema sembra che ci stia facendo uno scherzo: si parla di una via con case numerate in modo consecutivo, a partire dall’1, si parla di uno degli abitanti, Benoit, che abita in questa via e fa la media dei numeri delle case, escludendo la propria. Aggiungendo al risultato la propria età, ottiene come risultato 20,16. Se sappiamo che oggi è il suo compleanno, qual è l’età di Benoit? La soluzione del quesito offre uno spaccato interessante della matematica, uscendo dagli schemi abituali e obbligando a mettere in gioco una serie di strategie e una grande attenzione ai particolari, che non possono che meravigliarci.
Ogni volta che mi imbatto in un video di Vihart, non posso che restare a bocca aperta a vedere cosa riesce a realizzare con un pezzo di carta, forbici e pennarelli. In questo video propone gli scutoidi, in tre versioni diverse. Secondo Wikipedia, «Lo scutoide è un solido geometrico compreso tra due superfici parallele (poligoni), dove due vertici di uno dei poligoni sono uniti ad un vertice del poligono opposto tramite una curva o una congiunzione a forma di Y. Lo scutoide formato dall’unione di un esagono e un pentagono è stato definito per la prima volta nel 2018 dai ricercatori dell’Università di Siviglia osservando le cellule epiteliali che aderiscono tra loro per formare un tessuto con la funzione di rivestimento in grado di curvarsi e piegarsi. In futuro potrà avere applicazioni in biomedicina, ingegneria tissutale e nella creazione di organi artificiali.» La tassellazione che riesce a realizzare permette di riempire lo spazio, ma ci offre anche tanta bellezza: il video di Vihart fa venire voglia di mettersi alla prova…
Anche con BergamoScienza abbiamo realizzato bottiglie di Klein, nastri di Mobius, ma non ci siamo (per ora) cimentati con gli scutoidi: per questa edizione ci siamo accontentati di un piccolo braccialetto che cambia colore a seconda di come lo si osserva. Nel trattare la prospettiva, l’oggetto è stato l’ideale per sottolineare l’importanza del punto di vista, di come la percezione delle cose cambi a seconda di come lo guardiamo. Il bracciale ha conquistato i partecipanti alla scuola in piazza e speriamo che coinvolgerà anche quanti parteciperanno, domani, alla prima edizione del Celeri in Piazza, che si svolgerà sulla piazza del porto di Lovere. 

Novità importanti!
Non posso che chiudere la newsletter richiamando la notizia condivisa sui social: il sito MaddMaths! è ora un’associazione! Si tratta di «un’organizzazione senza scopo di lucro, con l’obiettivo di promuovere la matematica, la ricerca e la cultura scientifica, combattendo i pregiudizi e le resistenze verso le discipline STEM.» L’associazione, oltre ad avere questi grandi obiettivi condivisibili da tutti coloro che hanno a che fare in qualche modo con la matematica, aggiunge una «particolare attenzione all’insegnamento della matematica e alle questioni di genere, sociali, economiche e culturali ad essa collegate». A questo punto MaddMaths! non sarà più «solo una vetrina della matematica, sia italiana che internazionale, ma anche un luogo di incontro e confronto per chiunque sia interessato: studenti, insegnanti, persone attive nella ricerca, curiosi, fino a chi ha solo un’infarinatura di matematica.» La prima Assemblea è stata convocata per martedì 22 ottobre alle 18.30 e siccome possono partecipare solo le persone che abbiano già ricevuto comunicazione dell’approvazione del Consiglio Direttivo della loro adesione all’Associazione, meglio iscriversi quanto prima!

Buona matematica e buon cammino! Ci sentiamo tra TRE settimane!

Daniela

PS: Traduzione della vignetta allegata
Mi spiace per il mio compito di matematica, signora.
Nel venire a scuola, stamattina, l'ho in qualche modo lasciato cadere nel fango.
Magari potrebbe pulirlo con la sua manica... vuole provare?
Immagino di no

Sabato, 14 Settembre 2024 03:14

Carnevale della matematica #180

“Canta canta, il merlo, il merlo tra i cespugli”
(poesia gaussiana)

Benvenuti all’edizione numero 180 del Carnevale della matematica!

Come i precedenti, il numero 180 è introdotto dalla consueta CELLULA MELODICA predisposta da Dioniso Dionisi che l’ha definita una «cellula melodica con un’armonizzazione minimalista». 

 

180 è, evidentemente, un numero pari, e, come evidenziato dalla poesia gaussiana sopra riportata ha cinque fattori primi: 2 (che corrisponde a “canta”), 3 (che corrisponde a “il merlo”) e 5 (che corrisponde a “tra i cespugli”). Le ripetizioni della cellula melodica (e la fattorizzazione imparata alla scuola secondaria di primo grado!) ci fanno dire che 180 è dato da 2x2x3x3x5. La somma dei suoi divisori (sono 18) è 366, perciò 180 è un numero abbondante, ma è anche l’undicesimo numero altamente composto, che significa che ha più divisori di tutti i numeri che lo precedono (il prossimo sarà 240). Tra le curiosità a mio avviso più belle che emergono dal web cercando 180:

  • è un numero di Harshad nel sistema numerico decimale, cioè è divisibile per la somma delle sue cifre. La definizione di questo numero risale al matematico indiano Dattaraya Ramchandra Kaprekar (1905-1986): lavorò come insegnante per tutta la sua carriera, ma pubblicò diversi articoli di matematica ricreativa. Secondo Wikipedia, il termine Harshad deriva dal sanscrito “harṣa” che significa “grande gioia”;
  • è la somma di sei numeri primi consecutivi: 180 = 19 +23 + 29 + 31 + 37 + 41;

  • è il numero che indica alcune strade negli Stati Uniti, ma a me piace ricordare la Interstate 180 dell’Illinois, che va da Princeton a Hennepin, per un totale di poco più di 21 km (anche se non è la Princeton che tutti conosciamo, quella della famosa Università e di Einstein, che è nel New Jersey);
  • la Vespa 180 Rally della Piaggio è stata prodotta tra il 1968 e il 1973 in 26.000 esemplari

Visto che mi sto perdendo in campo automobilistico, non posso non citare l’«inversione a U», che può essere indicata come una svolta di 180°. È abbastanza comune, quando si nomina 180, pensare all’angolo piatto, indicato in radianti come p, e direi quindi che è il caso di passare al primo post (che non è esattamente in tema, ma a suo modo sì), che tratta della Sezione Aurea e di un’identità dove compaiono contemporaneamente alcune delle più importanti costanti matematiche. Essendo formule che contengono Pi Greco, ecco trovata la prima connessione con il #180. Il post è di Mauro Merlotti dello Zibaldone Scientifico e si intitola Formule complesse

Il tema scelto per questa 180^ edizione del carnevale è Matematica e sport, ispirato da questa estate di Olimpiadi e Paralimpiadi, da un mondo dello sport sempre più ricco di matematica e da una matematica che può offrire sempre più risorse anche allo sport.
Comincio il Carnevale settembrino dando la precedenza ai matematti che hanno scritto qualcosa in tema. La prima a rispondere alla chiamata è stata Annalisa Santi, che ha dedicato il proprio contributo al grande campione Francesco Molinari, l’uomo che il 22 luglio 2018 entrò nella storia del golf. «Con questo articolo avevo voluto fare un omaggio al grande golfista che vinse l’Open Championship scozzese, il più antico e celebre dei Major, lasciando così a Carnoustie, per la prima volta dal 1860, il nome di un atleta italiano, e, nello stesso tempo, parlare di questo stupendo gioco del golf e di un po’ della matematica che vi si cela.»

Mauro Merlotti, dalle pagine dello Zibaldone scientifico, parla del fotofinish, uno «strumento indispensabile per molte gare sportive; potrebbe sembrare una fotografia, ma mentre questa è la riproduzione un oggetto ad un determinato istante (almeno in prima approssimazione), il fotofinish riproduce un oggetto ad una determinata posizione (con scorrimento continuo della pellicola)».

Nel suo blog Gli studenti di oggi, Roberto Zanasi propone un post senza tante parole, con un grafico della classifica delle Olimpiadi costruito con «un ordinamento parziale in cui uno stato X è stato migliore di un altro stato Y se il medagliere di Y può essere trasformato nel medagliere di X mediante una sequenza di aggiunte di medaglie oppure di sostituzione di medaglie basse con medaglie alte.»

Paolo Alessandrini, autore di Matematica in campo, non poteva far mancare il proprio contributo a questa edizione del Carnevale e infatti ci regala ben sei post, quattro in forma di “shorts” e due in forma di video più lunghi e articolati. I link rimandano al nuovo blog Paolo Alessandrini – Racconto la matematica in più modi: sono autore, divulgatore, docente. Ecco l’elenco dei link, descritto direttamente da Paolo:

  1. Dalle origini a EURO 2024: storia e geometria dei palloni da calcio: Un viaggio attraverso l’appassionante storia dei palloni da calcio, con particolare attenzione alle questioni geometriche
  2. Eurogoal a effetto: dal cucchiaio di Totti al tiraggiro di Zaccagni: Curiosamente, molti dei più famosi tiri a effetto della nostra Nazionale di calcio sono andati in scena durante edizioni del campionato europeo: ecco la matematica e la fisica che sta dietro queste prodezze.
  3. Olimpiadi, che palle! Uno short dedicato ai vari tipi di palla utilizzati nelle specialità olimpiche.
  4. La matematica di Marcell Jacobs: Uno short sul teorema di Lagrange applicato ai 100 metri olimpici.
  5. La matematica (e la fisica) di Gimbo Tamberi: Uno short sulla matematica e sulla fisica del salto in alto.
  6. La formula rivoluzionaria della Champions League 2024-25: Uno short sulla nuova formula della Champions League, molto curiosa dal punto di vista combinatorio.

Per i contributi di MaddMaths! comincio dai due contributi realizzati sulla scia degli ultimi europei di calcio, lasciando a loro la parola:

  • EURO 2024: l’europeo dei dati Euro2024 ha visto la vittoria della Spagna in finale contro l’Inghilterra. Oltre che in campo, questo campionato europeo si è giocato tra numeri, algoritmi e dati. Ce ne parla Marco Menale per la rubrica La Lente Matematica.
  • Il tabellone ad eliminazione diretta degli Europei: una scelta non ottimale? Sono finite le partite dei gruppi di Euro2024 e sta per iniziare la fase ad eliminazione diretta. Olanda e Austria potrebbero rincontrarsi già ai quarti di finale!! Com’è possibile? È un errore? Cesco Reale (divulgatore ludo-scientifico: ecco la sua divulgazione matematica e quella ludica) e Alberto Saracco provano ad approfondire, per capire meglio come il ragionamento matematico possa portare alla creazione di tornei più equi.

E, poi, un paio di extra sul tema, dall’archivio di questo 2024:

  • Marco Menale ha raccontato in tre episodi de La Lente Matematica cos’è l’xG – expected goals, e come questo parametro si colleghi all’angolo di tiro e all’angolo Kos, ossia l’angolo di tiro considerando gli avversari presenti di mezzo.
  • Le leggi di Newton aiutano a nuotare meglio Cento anni fa, alle Olimpiadi di Parigi del 1924, l’americano Johnny Weissmuller vinse i 100 metri di stile libero maschili con un tempo di 59 secondi. Quasi un secolo più tardi, nelle Olimpiadi di Tokyo 2020, Caeleb Dressel, sempre nello stesso stile, portò a casa la medaglia d’oro rosicchiando 12 secondi a Weissmuller. I tempi, in questo sport, sono significativamente migliorati negli anni come risultato combinato di diversi fattori di innovazione applicati all’allenamento, alla strategia di recupero, alla nutrizione, nonché all’uso di più moderne attrezzature. Ma un ruolo chiave, in questi progressi, va riconosciuto sicuramente alla biomeccanica della bracciata, che ha consentito di ottimizzare le tecniche natatorie in ogni stile. Negli anni ultimi, l’integrazione di principi matematici e scientifici e l’uso di sensori indossabili ha ulteriormente perfezionato le prestazioni degli atleti, come dimostrano i risultati della squadra di nuoto dell’Università della Virginia (UVA), capitanata dall’allenatore Todd De Sorbo ed assistita da Ken Ono. Ce ne parla Stefano Pisani per le News.

Tra le varie proposte pervenute da Gianluigi Filippelli per il suo blog DropSea, c’è l’articolo Inseguimenti in pista, a tema Formula 1, per la serie dei Paralipomeni di Alice: il problema è proposto da Maurizio Codogno nel 22° volume della serie Matematica della Gazzetta dello Sport ed è una bellissima idea da proporre in classe. Siccome il post è stato pubblicato in occasione del Gran Premio d’Ungheria, Gianluigi si è divertito a cercare le due velocità che permettono le prestazioni riportate nel problema proprio sul circuito d’Ungheria, scoprendo risultati a dir poco fantascientifici, per delle auto da corsa.

I matematti difficilmente riescono a stare nei confini di un tema, forse perché la matematica stessa va ben al di là dei limiti imposti, perciò non sorprende che i contributi di altri argomenti superino di gran lunga quelli che parlano di sport. Procediamo quindi con Dioniso Dionisi, che ci offre la prima parte di Archita, Platone, Eudosso e la duplicazione del cubo. Si tratta, secondo le parole dell’autore, di «un dialogo in cui il giovane Eudosso illustra a Platone, in visita a Taranto, la soluzione del suo maestro Archita per la duplicazione del cubo.» Eccone un estratto: “«Ah, conosco bene la duplicazione del cubo», replicò subito il giovane. «Il maestro Archita ha preteso che la studiassimo a fondo. Anche perché… la vera soluzione è sua. Quella di Ippocrate è insufficiente perché semplifica il problema ma non lo risolve. Invece il mio maestro ha trovato la soluzione concreta e non solo teorica, come quella di Ippocrate». «E… quale sarebbe questa soluzione concreta?», chiese Platone con circospezione.”

I contenuti di Maurizio Codogno sono tantissimi, come sempre. Eccoli, presentati da lui stesso e distinti per categoria.

Cominciamo con i volumi della collana Matematica:

  • 19 – L’analisi matematica, di Salvatore Fragapane: risposte a domande che non vi siete mai fatti sul perché si studia analisi.
  • 20 – La teoria dell'informazione, di Maurizio Codogno: quante cose ho dovuto ristudiare per scriverlo :-) ma spero di aver dato un’idea del come si può inviare messaggi con alta probabilità di ricezione.
  • 21 – Le trasformazioni geometriche, di Bruno Cifra: una visione unificatrice di tutte le geometrie, seguendo il programma di Erlangen.
  • 22 – L’algebra, di Paolo Gangemi: le definizioni di base dell’algebra come si studia all’università.
  • 23 – I numeri complessi, di Marco Erba e Claudio Sutrini: molto interessante la parte dove si mostra come i numeri complessi siano necessari in fisica quantistica.
  • 24 – L’analisi complessa, di Paolo Caressa: vincoli a gogo rendono più interessante la struttura rispetto all’analisi in campo reale.
  • 25 – La teoria dei numeri, di Francesco Zerman: uno sguardo su alcune parti della regina della matematica, con parti che non trovate facilmente in giro come quella sui numeri p-adici.
  • 26 – Le equazioni differenziali, di Marco Menale: dalla propagazione di un’epidemia a quella del calore, la parte della matematica che più serve alla fisica.
  • 27 – La geometria algebrica, di Ottavio G. Rizzo: non arriviamo a risolvere l’Ultimo Teorema di Fermat, ma almeno abbiamo una minima idea del perché si parla di curve ellittiche.
  • 28 – La teoria dei grafi, di Sonia Cannas e Ludovico Pernazza. Le basi di una teoria nata con Eulero e sviluppatasi soprattutto con i computer.
  • 29 – L’analisi funzionale, di Pierluigi Vellucci: perché mai una funzione deve solo trasformare un numero in un altro numero, e non una funzione in un’altra funzione?
  • 30 – La geometria differenziale, di Christian Casalvieri: dopo che l’analisi matematica ha sfruttato la geometria, ora le rende il favore.
  • 31 – La matematica dei calendari, dei Rudi Mathematici: usare la matematica in maniera creativa per trovare una quadra dove non c’è.

Ci sono anche altre recensioni matematiche:

Per quanto riguarda il mercoledì matematico:

C’è una bella rassegna anche per i Quizzini della domenica:

  • Senza conti: si può risolvere… senza conti.
  • Quadrato ruotato: ha il bello che può essere risolto in vari modi.
  • Multilingue: un’applicazione quasi completa della discesa infinita, con un salto mortale finale.
  • Nove punti: chiama a gran voce il principio dei cassetti (e un po’ di geometria di base).
  • Quadrante a zig zag: problemino puramente geometrico e pitagorico.
  • Piramide numerica: è davvero facile, e la parte più interessante è trovare la soluzione più semplice.
  • Batterie scariche: alla fine si è rivelato più complicato del previsto.
  • Pesce: a prima vista è impossibile da risolvere, ma alla fine dà un risultato semplice.
  • 13-14-15: si può risolvere con la legge dei coseni, ma c’è un sistema più divertente.
  • Birra, e sai cosa bevi: abbastanza immediato da risolvere.
  • Cioccolatini: per risolverlo ci vuole un po’ di pazienza.
  • Tennis non transitivo: in un torneo all’italiana se tutti hanno vinto almeno una partita non c’è un ordine totale tra i giocatori.

Solo un paio di post per la serie povera matematica:

È ora dell’altrettanto lunga lista di articoli di MaddMaths! e, come al solito, la parola passa a loro:

  • C’è una nuova mini-serie a cura di Gabriele Belegni, dove esploreremo i concetti principali di una delle branche più affascinanti della matematica: la topologia. Cercheremo di scoprire le motivazioni e le idee che hanno spinto ad introdurre certi concetti concentrandoci sull’aspetto intuitivo piuttosto che su quello formale. Nella prima puntata scopriremo cosa studia la topologia partendo da due semplici triangoli. Trovate tutte le puntate su questa pagina.
  • Una Intelligenza Artificiale fatta con 21 bicchierini Siete spaventati dall’intelligenza artificiale? Oppure ne siete entusiasti, ma non sapete bene perché? In questo articolo Massimo Ferri, topologo, matematico applicato, ci fa giocare con una versione molto semplificata di “macchina che impara”, mettendo insieme dei... bicchieri. Forse è il modo per capire meglio questa rivoluzione che già sta cambiando le nostre vite.
  • Il senso del doppio È uscito il libro “Il senso del doppio – la matematica tra rebus e indovinelli” di Margherita Barile e Giuseppe Pontrelli. Vi proponiamo l’Introduzione del libro.
  • Arriva Comunicamat 6 – online dal 9 all’11 ottobre 2024 La sesta edizione del congresso “Comunicare la matematica” ritorna con la stessa formula degli ultimi anni (online su canali dedicati) da mercoledì 9 a venerdì 11 ottobre 2024. Tre pomeriggi a distanza, dedicati a interventi sulla comunicazione e la divulgazione della matematica. Il congresso si può seguire anche come corso di aggiornamento, con iscrizione su SOFIA. Tutte le informazioni su programma, presentazione di ospiti e interventi, iscrizione, partecipazione si trovano sul sito https://comunicamat.unicam.it.
  • Matematica e agrivoltaico Il 13 Febbraio di quest’anno è stato pubblicato sul sito del ministero il decreto che “promuove la realizzazione di sistemi agrivoltaici innovativi di natura sperimentale”. Il decreto mette a disposizione risorse per oltre un miliardo di euro con l’obiettivo di realizzare nuovi impianti per un totale di circa 1 GigaWatt (GW). Per comprendere l’entità della misura basti osservare che al 31 Dicembre 2022 la potenza totale installata era di 123 GW, mentre la potenza da fotovoltaico ammontava a 25 GW: si tratta quindi dell’1% circa della potenza totale, e del 4% di quella da fotovoltaico. Ma cosa sono questi “sistemi agrivoltaici”? E cosa c’entra la matematica? Scopriamolo insieme con questo contributo di Annalisa Pascarella dell’IAC-CNR e Alberto Sorrentino dell’Università di Genova, tra le persone fondatrici dello spin-off matematico BEES (bees.srl).
  • Un’IA medaglia d’argento alle IMO2024? La notizia non arriva completamente a sorpresa: alcuni segnali, alcune anticipazioni erano nell’aria da alcuni mesi. Ma sapere che un’intelligenza artificiale è riuscita a risolvere correttamente 4 problemi dei 6 dell’ultima Olimpiade Internazionale di Matematica (IMO) fa comunque un certo effetto. Ce ne parla Luigi Amedeo Bianchi.
  • Rivoluzioni matematiche: il teorema della palla pelosa di Silvia Benvenuti Con il numero di settembre de Le Scienze troverete in allegato (a 14,90 euro, il prezzo include la rivista) il ventiquattresimo dei trenta volumi della collana dedicata ad alcuni tra i maggiori teoremi matematici. La collana è stata elaborata in collaborazione con la redazione di MaddMaths!. Questo nuovo volume è dedicato al teorema della “palla pelosa” ed è stato scritto da Silvia Benvenuti. Mentre, ad agosto è stato il turno dei Teoremi di Shannon a cura di Francesca Carfora.
  • Archimede 2/2024: matematica e senso critico Vi proponiamo il sommario del direttore Roberto Natalini del numero 2/2024 della rivista Archimede:

Iniziamo questo secondo numero del 2024 di Archimede con un contributo importante di Anna Baccaglini-Frank, scritto con un gruppo di ricerca internazionale, sull’educazione matematica “tecnocritica”, un approccio che permette agli studenti di «impacchettare e spacchettare la matematica», sia riguardo l’uso della tecnologia digitale in classe sia riguardo l’esplorazione da parte degli studenti della tecnologia che li circonda. Segue la nuova puntata della serie promossa da Francesca Gregorio sui numeri nell’insegnamento con i numeri razionali. Infine Ruggero Pagnan ci propone alcune sfide matematiche che comportano l’esercizio del pensiero laterale. Per le Strane storie matematiche, proponiamo la discussione sul quesito Invalsi sui numeri pari e il lancio di una nuova storia. Il fumetto e la copertina, sempre dedicati a Mandelbrot, sono opera di Lorenzo Palloni, il titolo della storia è “Rugoso”.

  • Abbiamo pubblicato un articolo di Daniele Gouthier contenente alcune riflessioni sulla comunicazione della matematica e il suo rapporto con la società. A questo sono seguiti gli interventi di Nicola Ciccoli e Domingo Paola. Si sono, poi, aggiunti Marco Menale con valorizzazione e università e Simone Ramello, dottorando all’ultimo anno presso l’Università di Münster, con il punto dall’estero.
  • Risultati INVALSI 2024 in matematica: cosa ci possono dire (o non dire) i primi risultati L’11 luglio 2024 sono stati presentati i risultati delle prove nazionali INVALSI che, tra i mesi di marzo e maggio 2024, hanno coinvolto più due milioni e mezzo di studentesse e studenti italiani appartenenti alle classi II e V della scuola primaria, III della scuola secondaria di primo grado, II e ultimo anno della scuola secondaria di secondo grado. Le studentesse e gli studenti si sono cimentati in prove relative all’Italiano, alla Matematica e all’Inglese (Listening e Reading). Un primo commento di Ketty Savioli della Commissione Italiana per l’Insegnamento della Matematica (UMI-CIIM) sui risultati in matematica.
  • Non solo applausi e medagliette – Giornata conclusiva del 31° Rally Matematico Transalpino a Firenze Il primo giugno 2024 si è tenuto a Firenze la 31° edizione del Rally Matematico Transalpino a Firenze. Pubblichiamo un appassionato reportage di un partecipato collettivo di organizzatrici e organizzatori: Brunella Brogi, Fabio Brunelli, Fabiana Ferri, Gianni Gallai, Mirko Marini, Silvia Mazzucco, Ginia Percario, Bice Perna, Chiara Pradella, Francesca Ricci, Valentina Scarpini.

Per La matematica danzante di Raffaella Mulas:

Per La Lente Matematica di Marco Menale:

  • Probabilità: un pezzo della matematica ingiustamente bistrattato La probabilità può aiutare a comprendere i fenomeni del mondo nella loro complessità, così da evitare pregiudizi e false credenze. Quest’episodio è stato a quattro mani, tra superenalotto e test medici, con Angelo Vulpiani, Professore ordinario di Fisica Teorica alla Sapienza.

Non sarebbe Carnevale se non ci fossero i contributi dei Rudi Matematici ed ecco i “post istituzionali”:

  • Chapeau! – Soluzione del quesito di giugno: c’era tutto un discorso parigino che riguardava la sottile capacità di individuare il colore del proprio cappello.
  • Tappezzeria formato A8 – Soluzione del quesito di luglio: qui invece tutto il problema sta nello scrivere i numeri naturali tutti attaccati.
  • La spiaggia delle meraviglie – Ad agosto, due problemi al prezzo di uno, con il Capo in vacanza che gioca a fare il Cappellaio Matto

I Q&D, invece, sono ben sette e il testo espositivo è così corto che non vale davvero la pena riassumerlo:

Oltre al post in tema Gianluigi Filippelli ha deciso di raccogliere tutti i post estivi in due post: il primo link raccoglie i contributi postati tra giugno e luglio, mentre il secondo raccoglie quelli postati tra luglio e agosto: ci sono le pubblicazioni su DropSea, quelle dal Cappellaio Matto e quelle in inglese, con alcune cose non necessariamente a tema matematico.

Tra gli articoli più recenti ci sono tre recensioni:

Nella sezione de Le grandi domande della vita, invece, ecco Di perimetri, aree e volumi sullo stretto legame analitico tra questi particolari “bordi” geometrici. Infine, dal Caffè del Cappellaio Matto, un post ne La scienza dei supereroi sulla ricorsione: L’Osservatore osserva l’Osservatore che osserva l’Osservatore...

In chiusura, non mi resta che presentare anche il mio articolo Non solo sport: nel quale elenco una serie di caratteristiche necessarie per una buona riuscita nello sport, riconoscendo come siano le stesse per la matematica. Per questo motivo, abbino allo sportivo nel quale ho riconosciuto questa caratteristica un matematico o un fisico, suggerendo letture e spunti di riflessione.

Questo è quanto…

Direi che la rassegna offre, come sempre, matematica per tutti i gusti. Ci si ritrova a ottobre!

Mercoledì, 11 Settembre 2024 13:48

Non solo sport

L’estate delle Olimpiadi porta con sé tantissime riflessioni. Personalmente, vivendo la scuola da insegnante di matematica, ho scoperto che matematica e sport hanno parecchio in comune: «Creare la matematica è un’esperienza sofferta e misteriosa» scrive Simon Singh e tutti noi sappiamo che realizzare le grandi imprese dello sport non è certo facile. Ho già tentato un’esplorazione di questi aspetti con le Olimpiadi di Tokyo, ma l’articolo che avevo scritto è stato pubblicato su un sito che ormai è chiuso e le mie riflessioni si sono perse nella nebbia del web. Provo a ripercorrere il sentiero di allora, aggiungendo nuove tappe e nuovi panorami, elencando le caratteristiche necessarie per una buona riuscita nello sport e abbinando ad ogni sportivo un matematico o un fisico, suggerendo letture e spunti di riflessione. 

Forza di volontà
La forza di volontà è quella caratteristica che non si può che riconoscere a tutti gli atleti, ma se devo sceglierne un rappresentante propongo Gianmarco Tamberi, vincitore della medaglia d’oro nel salto in alto a Tokyo: sul gesso con il quale l’avevano fasciato dopo l’infortunio che gli era costato le Olimpiadi di Rio, nel momento in cui aveva deciso di ricominciare a lottare aveva riportato la frase “Road to Tokyo 2020” (poi corretto in 2021). Quel gesso l’ha accompagnato a Tokyo, come ricordo delle fatiche, fisiche e mentali, che aveva dovuto affrontare per raggiungere l’ambito traguardo, un «simbolo della mia forza d’animo, della mia volontà di provarci e riprovarci nonostante le avversità». La vittoria di Tamberi alle Olimpiadi di Tokyo è stata anche un esempio di amicizia, quella con Mutaz Essa Barshim, con il quale ha condiviso la medaglia d’oro. Abbiamo rivisto la stessa amicizia a Parigi, dove, però, la forza di volontà non è bastata: Gimbo ce l’ha messa davvero tutta per conquistare il podio anche in questa edizione, ma le sue condizioni di salute hanno remato contro di lui fin dall’inizio. Eppure, io credo che, nel fallimento dell’impresa, Gianmarco Tamberi abbia regalato a tutti noi più di quanto avrebbe potuto fare con una vittoria: ci ha dimostrato che, a volte, è necessario impegnarsi in tutti i modi, anche quando l’obiettivo sembra fuori dalla nostra portata. Dal canto suo, Gimbo aveva la consapevolezza di essere al meglio della forma e di poter dare buoni risultati, nel caso in cui fosse riuscito a combattere la sofferenza fisica.

La forza di volontà mi riporta alla mente tantissimi esempi e, tra tutti, scelgo quello di Marie Curie: il racconto della sua vita ci è presentato, in maniera essenziale, nella sua Autobiografia, dove non mancano riferimenti alla fatica di un lavoro ripetitivo, ma anche alla felicità che quel lavoro procurava a lei e a Pierre. «Una delle nostre gioie era recarci di notte nel laboratorio. Allora scorgevamo da tutte le parti le sagome debolmente illuminate dei flaconi e delle boccette che contenevano i nostri prodotti. Era davvero una vista incantevole e sempre nuova per noi. Le provette scintillanti sembravano tenui luci fiabesche.» Anche Marie Curie ha vissuto grandi amicizie nel corso della sua vita: oltre al sodalizio con Pierre, oltre all’amicizia con Albert Einstein, non si può dimenticare il patto stretto con la sorella Bronia, raccontato in Marie e Bronia, un patto tra sorelle. Bronia parte per Parigi per studiare medicina, mentre la sorella lavora come istitutrice per mantenerla agli studi; una volta conclusi gli studi di Bronia, anche Marie può partire per Parigi, potendo contare sul sostegno della sorella: il patto ha permesso a entrambe di realizzare il proprio sogno.
Nella vita di Marie Curie, non sono mancati i momenti di difficoltà: la morte di Pierre, quando le figlie erano ancora piccole, e poi l’attacco mediatico subito nel momento in cui è diventata di dominio pubblico la relazione con Paul Langevin. Sara Rattaro nel romanzo Io sono Marie Curie racconta molto bene questi momenti della vita di Marie Curie, immaginando che sia proprio lei a raccontare il dolore dopo la morte del marito, il ritrovato entusiasmo agli inizi della relazione con Langevin, e la forza di ricostruirsi, con l’appoggio degli amici, dopo i pesanti attacchi. 

Determinazione
Un altro esempio di forza di volontà che non è riuscita a combattere la sfortuna ci è offerto da Derek Redmond, che alle Olimpiadi di Seoul del 1988 era stato obbligato a ritirarsi a causa di un infortunio, dieci minuti prima della gara. Quattro anni dopo, alle Olimpiadi di Barcellona, la sua voglia di vincere è al massimo livello: qualificatosi alle semifinali dei 400 m piani con il tempo migliore, sta affrontando al meglio la gara, ma dopo 250 m lo strappo del bicipite femorale destro lo obbliga a fermarsi, segnando la fine del suo sogno olimpico. Si rimette in piedi, perché vuole tagliare il traguardo: procede con determinazione, nonostante il dolore e, nella sua gara personale, lo raggiunge il padre, Jim, che lo sostiene fino alla fine, accogliendo le sue lacrime e cercando di consolarlo. Quando taglia il traguardo, Derek viene accolto dalla standing ovation dei 65 mila spettatori presenti. Il filmato della gara è disponibile sul canale YouTube ufficiale delle Olimpiadi, nella descrizione del quale si parla di «vero coraggio contro le avversità»: «Pochi ricordano che lo statunitense Steve Lewis ha vinto la semifinale in un tempo di 44.50. Ma nessuno, tra quelli che hanno visto la gara, può dimenticare il coraggio di Derek Redmond nel giorno che ha definito l’essenza dello spirito umano e olimpico».

«Da quando l’ho incontrato per la prima volta da bambino, l’Ultimo Teorema di Fermat è stata la mia grande passione»: sono le parole di Andrew Wiles riportate da Simon Singh nel celebre L’Ultimo teorema di Fermat, il racconto di una dimostrazione che ha richiesto più di 350 anni. La passione per una delle congetture più celebri, e forse più semplice da enunciare, della storia della matematica accompagna Wiles nella sua crescita e, quando decide di impegnarsi seriamente nella dimostrazione, lavora in completo isolamento e in segreto, quasi ad imitare il lavoro di Fermat: «Capii che tutto ciò che ha a che fare con l’Ultimo Teorema di Fermat genera un interesse eccessivo. Non è possibile rimanere concentrati per anni a meno che non ci sia un completo raccoglimento, che troppi spettatori avrebbero distrutto.» Forse non c’è stata una standing ovation quando Andrew Wiles ha concluso la sua conferenza, nel giugno del 1993, dicendo: «Penso di fermarmi qui», ma c’è stato un lungo applauso, dopo che un silenzio denso di attenzione e solennità aveva accolto la sua dimostrazione. Quel momento di gloria sembra rovinato dalla scoperta di un errore: «A meno di sei mesi dalla conferenza al Newton Institute, il sogno d’infanzia di Wiles era a brandelli. Alla gioia, alla passione e alla speranza che lo avevano accompagnato negli anni trascorsi a eseguire calcoli in segreto si sostituirono l’imbarazzo e la disperazione.» Credo che sia proprio in questo momento che viene allo scoperto la determinazione di Wiles: non sono bastati gli anni in solitudine a lavorare alla dimostrazione, è in questo momento che la sua forza si mostra in tutta la sua bellezza, adesso che gli occhi della comunità matematica sono puntati su di lui e che qualcuno comincia a parlare di fallimento dell’impresa. «Dopo essere stato spinto sull’orlo della resa, Wiles aveva reagito dimostrando il proprio genio al mondo. Gli ultimi quattordici mesi avevano rappresentato il periodo più doloroso, umiliante e deprimente della sua carriera matematica. Adesso un’intuizione brillante aveva posto fine alla sua sofferenza.» Difficile riuscire a raccontare meglio di Singh questa impresa eccezionale. 

Grinta
Come Tamberi, anche Bebe Vio ha puntato alle Olimpiadi di Tokyo accompagnata da un conto alla rovescia: ha parlato dei suoi 119 giorni, quelli che ha dedicato alla preparazione per le Paralimpiadi, «119 giorni per raggiungere l’impossibile» (come ha titolato Repubblica): anche lei, durante la gara, aveva con sé il braccialetto dell’ospedale sul quale era scritto «– 119» e solo a gara conclusa abbiamo saputo del terribile verdetto di aprile e dei rischi corsi a causa di un’infezione. In realtà, anche questa competizione è stata preceduta da molte difficoltà: sono passati solo tre anni da Tokyo e Bebe Vio ne ha usati due per sottoporsi a interventi chirurgici per essere al meglio della forma. Con la positività che la contraddistingue è riuscita a dire: «è stato un periodo difficile, ma è stato fantastico» e questo perché ha avuto il supporto di varie figure che l’hanno aiutata a coronare il sogno di ottenere la medaglia di bronzo sia nel fioretto individuale che in quello a squadre.
Prima ancora della competizione, Bebe Vio aveva dichiarato sui social che non avrebbe partecipato alle Paralimpiadi di Parigi, ma che avrebbe GAREGGIATO, facendosi portavoce di un cambiamento non solo verbale, ma di sostanza, culturale. Possiamo ricordare le sue parole, citate in questo articolo di Lorena Encabo e Benedetto Giardino: «Sappiamo di avere il potere di provare a dire qualcosa. Sappiamo che ogni punto qui, alle Paralimpiadi, potrebbe essere un punto con cui possiamo smuovere le persone, se un piccolo ragazzo con una disabilità sta guardando la televisione in quel momento specifico, guardando quel singolo punto. Possiamo letteralmente scuoterle e dire loro: “Ok, lo sport è bello, è sano, è fantastico”. È qualcosa di così bello e vogliamo che quante più persone possibili si spingano un po’ di più.»

Anche Cedric Villani, come Bebe Vio, dopo aver identificato il suo obiettivo, ha dovuto confrontarsi con un conto alla rovescia serrato: «Dopo mi resteranno cinque mesi, li passerò sul mio grande sogno, la regolarità di Boltzmann! A questo fine mi sono portato dietro degli appunti che ho scribacchiato in una decina di Paesi differenti.» Il sogno di Villani è l’Olimpo della matematica, la medaglia Fields, ma il conto alla rovescia è necessario: «Il limite di età a 40 anni, che stress! Non ho che 35 anni… […] Nel 2014 per soli 3 mesi sarò troppo vecchio; la MF sarà quindi nel 2010 o mai più.» Il teorema vivente è il racconto di questa impresa: narrato in prima persona, ricco di storia della matematica, di fumetti e di matematica, è un libro da leggere e da far leggere, per poter capire cosa significhi fare matematica ad alto livello. «Non ha prezzo un sentiero senza illuminazione! Quando non c’è la luna, non si ha neanche una visibilità di tre metri. Il passo accelera, il cuore batte un po’ più in fretta, i sensi restano sul chi vive. Uno scricchiolio nei boschi fa drizzare le orecchie, ci si dice che la strada è più lunga del solito, ci si immagina un malintenzionato in agguato, ci si trattiene a malapena dal mettersi a correre. Questa galleria buia è un po’ come la fase buia che caratterizza l’inizio di un progetto matematico», ma in fondo è così l’inizio di qualsiasi progetto. 

L’importanza della squadra
Nel suo avvicinamento al traguardo, Derek è stato sostenuto dal padre Jim, la sua squadra. Ripensare alle olimpiadi del 2021 non può che riportarci alla mente la squadra italiana che ha vinto la medaglia d’oro nella staffetta maschile 4x100 m: Patta, Jacobs, Desalu e Tortu. Domenico Licchelli, astrofisico che si occupa di didattica e comunicazione scientifica, ha evidenziato, in un post su Facebook, gli aspetti matematici e fisici che si nascondono dietro la vittoria della staffetta: i corridori devono avere, innanzi tutto, caratteristiche diverse, visto che «il primo frazionista deve essere un buon partente ed un buon corridore in curva. Il secondo frazionista deve essere potente nella corsa lanciata e resistente a lungo ad alta velocità. Il terzo deve esprimere una potenza muscolare tale che gli consenta di sopportare le maggiori spinte in curva opponendosi alla gravità terrestre ed alla forza centrifuga. […] Il quarto dovrà eccellere nella corsa lanciata e saper gestire le forze per portare a termine l'impresa, mantenendo il vantaggio o recuperando terreno». E tutto questo ancora non basta per vincere, perché conta anche l’«indice di cambio», ovvero la capacità di scambiarsi il testimone nel più breve tempo possibile e, per rendere l’operazione il più fluida e veloce possibile, è necessario provare e riprovare. Non possiamo riassumere il tutto dicendo semplicemente che l’unione fa la forza, perché è necessario ricordare anche l’esercizio che migliora le prestazioni. Nella vita scolastica, entrambi gli aspetti sono importanti, innanzi tutto perché i ragazzi si trovano inseriti in due squadre, la squadra formata dalla classe – perché a scuola non si impara come singoli ma come gruppo – e la squadra formata con i propri docenti, preparatori atletici consapevoli di ciò che è necessario fare per affrontare al meglio il percorso, e in secondo luogo perché è necessario un continuo esercizio per migliorare le proprie prestazioni (e non solo in matematica).

La squadra è presente nel lavoro di Cedric Villani: «Quello che anzitutto apprezzo del mio laboratorio, così piccolo e insieme così dinamico, è il modo in cui gli argomenti si mescolano tra i ricercatori di diversi orizzonti matematici, davanti alla macchina del caffè o nei corridoi, senza timore delle barriere tematiche.» La squadra è quella che ha formato Maryam Mirzakhani prima con Curtis McMullen e poi con Alex Eskin, dell’Università di Chicago, come raccontato in questo video. Ma se penso ad un’altra squadra, mi viene in mente, in tempi recentissimi, quella mostrata nel video dell’Università di Parma, realizzato in occasione dell’assegnazione dell’EMS Prize a Cristiana De Filippis: la giovane matematica parla di come sia stata attirata a Parma, durante il suo dottorato a Oxford, per la ricerca di alto livello fatta dal gruppo di analisi, racconta del suo lavoro dai ritmi intensi e senza orari, racconta con passione ed entusiasmo come si approccia alla ricerca. E poi ci sono le parole di Tuomo Kuusi dell’Università di Helsinki e di Giuseppe Mingione dell’Università di Parma con i quali sta lavorando. Il video ci permette di cogliere il senso di una squadra, di vedere le risate e la complicità che legano i singoli componenti. 

Gli errori
Nello sport come nella vita non mancano gli errori e i fallimenti: cominciamo da una (rara) sconfitta di Sinner ai primi di luglio di quest’anno e dal commento di Panatta al riguardo: «Nel tennis si perde, i più forti non lo fanno così spesso, e Jannik Sinner è tra questi, ma ogni tanto succede anche a loro. Esiste una normalità della sconfitta che andrebbe maggiormente rispettata.»
Il secondo fallimento (perché qui non si tratta di errore) è quello di Ambra Sabatini alle Paralimpiadi di Parigi: la sua emozionante intervista dopo la gara, e dopo la caduta che le è costata il podio, mostra tutta la sua grandezza, visto che parla del suo senso di colpa per aver rovinato la gara di Monica Contrafatto, ma mostra anche la sua grinta quando dice «Ho superato tante cose, supererò anche questa». Lo sguardo di Ambra è già puntato avanti: «C’è dell’amaro ora, so che però ho tante opportunità davanti ed è già cominciato il percorso verso Los Angeles 2028», perché, come diceva Paola Egonu all’indomani delle Olimpiadi di Tokyo, gli errori sono importanti per migliorarsi e crescere.
Di errori ha parlato anche Julio Velasco, all’indomani della vittoria della medaglia d’oro: intervistato dai giornalisti che gli hanno chiesto se avesse ritrovato la pace dopo le Olimpiadi di Atlanta del 1996, dove la nazionale maschile da lui guidata aveva perso in finale contro l’Olanda, il celebre allenatore ha parlato con la consueta saggezza ricordando che nello sport funziona così, a volte si perde per un soffio e a volte si vince per un altro soffio. La sua grandezza è nell’aver accettato la sconfitta che forse molti tifosi ancora non hanno accettato, ma soprattutto nel non accettare di essere messo su un piedistallo dopo la vittoria alle Olimpiadi: «Non siamo speciali. Siamo vincenti. In questa occasione siamo stati i vincitori.» Se si accettasse di essere speciali quando si vince, bisognerebbe mettere in conto di non esserlo quando si perde, e Velasco non si lascia vincere da questa tentazione.

Nel cercare storie per questo articolo, nel libro di Simon Singh sull’ultimo teorema di Fermat ho trovato due riferimenti al ruolo di Eulero nella costruzione della dimostrazione: «Il matematico più creativo della storia fu umiliato dalla sfida di Fermat», scrive inizialmente Singh. Ma, subito dopo, scrive qualcosa di ancora più grande: «Per nulla scoraggiato dal fallimento, Euler continuò a creare geniali teorie matematiche fino alla morte, un risultato reso ancor più notevole dal fatto che durante la fase conclusiva della sua carriera rimase completamente cieco.» Come non citare, infine, Alessio Figalli? In un’intervista con l’Università di Padova nel marzo di due anni fa, ha parlato proprio dell’errore: «Vivo nel fallimento, come tutti gli scienziati. Diciamo che per un problema risolto, dieci non riesco a risolverli. […] La ricerca è fatta di fallimenti e non c’è niente di male. Ognuno di noi, quando fa ricerca, deve capire come gestire la frustrazione del fallimento, perché quella è inevitabile: io, per esempio, la gestisco lavorando su più problemi. Di solito magari da due o tre non riesco a tirare fuori nulla, però magari al quarto che sto facendo qualcosa salta fuori e quello mi dà la motivazione e la soddisfazione per gestire poi quelli che non funzionano.» 

La medaglia di legno
Tendiamo a considerare il quarto posto, quando il podio ti sfugge per poco, il fallimento peggiore, eppure dal 3 agosto potremmo avere una visione diversa della cosa. In quella data, Benedetta Pilato si è classificata quarta, a un solo centesimo dal podio, nei 100 m rana: l’abbiamo sempre raccontata così, che ha perso il podio per un centesimo, ma da subito dopo la gara, durante un’intervista, la nuotatrice ci racconta una realtà diversa, cambiando il nostro punto di vista al riguardo, parlando del giorno più felice della sua vita. Ma come è possibile? «Questo è solo un punto di partenza» dice e poi ricorda: «Un anno fa questa gara non ero nemmeno in grado di farla.» La bellissima testimonianza di Benedetta Pilato e la polemica che ne è seguita – e che ha contribuito ad attirare l’attenzione sul problema – hanno permesso di cominciare a cambiare il punto di vista, tanto che, nella cerimonia del Quirinale che si svolgerà a fine mese, Mattarella riceverà anche i classificati al quarto posto.

C’è un illustre esempio anche nella matematica di una medaglia mancata, ed è realmente una medaglia, trattandosi della prestigiosa Fields: nel 1957, sia Ennio De Giorgi che John Nash “incontrano” il diciannovesimo problema di Hilbert, uno dei 23 proposti dal matematico tedesco durante la conferenza del Congresso Internazionale dei matematici a Parigi nel 1900. De Giorgi lo dimostra con metodi mai usati in precedenza e pubblica la soluzione su una rivista italiana non molto nota all’estero, mentre John Nash arriva alla soluzione un paio di mesi dopo. «Quarant’anni più tardi, dopo aver vinto il Nobel, Nash accennò a quelle speranze infrante nel suo saggio autobiografico, esprimendosi nel suo abituale stile ellittico: “Sembra plausibile che, se De Giorgi o Nash non avessero risolto questo problema (o i calcoli aprioristici sulla continuità effettuati da Holder), l’unico scalatore a raggiungere la vetta sarebbe stato il vincitore della Fields (che di solito viene conferita a persone con meno di quarant’anni).”» La delusione di Nash fu grandissima, come viene ben descritto nel libro appena citato di Sylvia Nasar Il genio dei numeri

Il talento
«Effortless is a myth», ovvero: il fatto che un obbiettivo possa essere raggiunto senza sforzo è un mito, dichiara Roger Federer nel suo celebre discorso all’Università di Dartmouth, proponendo questa affermazione come prima lezione (sono tre in totale).
Gregorio Paltrinieri ha dichiarato durante le Olimpiadi: «Non sono qui grazie al talento, sono qui grazie al sacrificio che faccio tutti i giorni» dopo le due medaglie vinte a Parigi.
«Sveglia alle sei e mezza, alle 7 e mezza già in piscina, tre ore di allenamento, cinque chilometri di nuoto, sonnellino, pranzo, poi di nuovo piscina, altri cinque chilometri, cena alle 20 e a letto presto.» è la vita che dichiara di aver condotto Thomas Ceccon per prepararsi alle gare.

Ecco un altro dei terribili miti che vanno assolutamente sfatati: parlare di talento nasconde la volontà di crearsi un alibi. Se riconosco “solo” il talento a Federer, a Paltrinieri, a Ceccon, nessuno pretenderà da me che io mi impegni per raggiungere simili obiettivi; se, invece, riconoscessi il lavoro e lo sforzo fatto, mi renderei conto che potrei raggiungere anch’io obiettivi di un certo livello. Questo non vale non solo nello sport, ma ovunque: «La verità è che ho dovuto lavorare molto duramente per farlo sembrare facile» dichiara Federer.
Non posso non citare le parole di Katalin Karikò, dalla sua autobiografia, Nonostante tutto:

«Non mi considero particolarmente intelligente. Nel corso degli anni ho conosciuto molte persone apparentemente dotate di una memoria fotografica che permetteva loro di imparare senza fatica. A uno dei miei compagni di scuola delle elementari bastava sentir dire una cosa una volta e non se la scordava più. Io no, non ho mai avuto questo dono. Ma già da piccola avevo capito una cosa fondamentale: quello che mi mancava a livello di abilità naturali, potevo compensarlo con lo sforzo. Potevo impegnarmi di più, applicarmi per un numero maggiore di ore, fare di più e farlo con maggiore attenzione.
Persino in prima elementare e in seconda elementare mi impegnavo con tutta me stessa nello studio. Cercavo di non sbagliare niente. Se commettevo un errore, ricominciavo da capo.
Studiavo.
Studiavo.
Studiavo.
E, coincidenza, a quanto pare il cervello è malleabile. Più lo esercitiamo, più lo rafforziamo. Quanto a me, mi sono esercitata a eccellere negli studi: era un esercizio attivo, come allenarsi a fare canestro per un aspirante atleta. Come un atleta, miglioravo. Man mano, per me la scuola è diventata un ambiente sempre più naturale. In terza elementare ero talmente immersa negli studi che ho iniziato a prendere sempre 5 [il massimo dei voti], e non ho più smesso.
Né, aggiungerei, ho mai smesso di esercitarmi.»

Come già fatto in Inesauribile caparbietà, non posso non citare Gigliola Staffilani, prima donna italiana full professor al MIT, che alla domanda di Roberto Natalini in un’intervista del 2018 «Quanto del tuo lavoro è intuizione e quanto è solo duro lavoro?» ha dato una bella risposta: «Credo che l’intuizione arrivi quando ti sei chiarita abbastanza della tua mente da poterla ricevere. E per chiarirti devi lavorare duramente per cercare di eliminare tutti quei tentativi che non portano da nessuna parte.»
Infine, a tutti coloro che parlano di talento matematico non posso che suggerire la lettura del libro di Stanislas Dehaene Il pallino della matematica

Lo sport ci insegna che non sempre è possibile realizzare i propri sogni e così, a scuola, quel 10 che sentivamo di meritare davvero a volte ci viene negato, ma questo non è necessariamente una cosa negativa. Ciò che conta è imparare, e ricordiamo le parole di Einstein, scritte nel 1931 in «Come io vedo il mondo»: «È nella crisi che sorge l’inventiva, le scoperte e le grandi strategie».

Sabato, 07 Settembre 2024 10:33

227 - 7 settembre 2024

Estate, tempo di riflessione
Mi piace pensare all’estate come al tempo della sistematizzazione di quanto fatto in passato, della riflessione e della progettazione in vista del futuro. Quest’ultima estate è stata per me l’uscita dalla mia comfort zone: a fine aprile ho ricevuto la proposta di tenere sei ore dell’insegnamento Metodi e strategie didattiche per l’insegnamento della matematica, nei corsi dei 30 e 60 CFU organizzati dall’Università Cattolica di Brescia (la stessa università dove mi sono laureata). Dover preparare le lezioni per fine agosto è stato per me un modo per riflettere su quanto realizzato in 25 anni di insegnamento, accogliendo il suggerimento di una collega/corsista che mi ha detto che a lei sarebbe piaciuto sentirmi parlare della mia esperienza di insegnamento. In effetti, non avendo una solida formazione in termini di didattica (a parte alcune letture), è stato meglio partire dalla mia esperienza, realizzando poi piccoli approfondimenti, costruiti con il lavoro di chi di didattica si occupa per professione.
La partenza non poteva che essere con l’intervista che Ilaria Fanelli ha fatto ad Alberto Saracco, docente di geometria presso l’Università di Parma, il 18 giugno scorso, con la presentazione del libro Le geometrie oltre Euclide. Durante la diretta, ho chiesto ad Alberto cosa avrebbe suggerito ad uno studente delle superiori per motivarlo a studiare matematica nonostante la fatica e la sua risposta è stata davvero articolata e profonda, focalizzando l’attenzione sui due attori principali del processo di insegnamento/apprendimento, ovvero lo studente e il docente. Siccome il mio intervento in questo corso si è svolto in due giornate consecutive, ho dedicato le prime tre ore al docente e le successive allo studente. 

La figura del docente di matematica
Le aspettative del mondo esterno nei confronti dei docenti sono molto elevate, soprattutto per l’insegnamento della matematica, e i docenti si trovano sottoposti, sempre più frequentemente, a forti pressioni, dovendo rispondere alle richieste, o meglio pretese, dei genitori e dei dirigenti. La prima accusa che viene rivolta agli insegnanti è quella di non saper motivare i propri studenti, e questo dà l’idea che il processo di apprendimento sia interamente a carico del docente. Lo stesso scrittore Jonathan Swift (1667-1745) si mostra impietoso quando descrive, nei suoi Viaggi di Gulliver, gli insegnanti di matematica: «Immaginazione, fantasia, invenzione sono loro affatto negate, né hanno nella loro lingua parole con cui queste facoltà possano esprimersi». Dopo aver chiesto ai corsisti di elencare le caratteristiche del docente ideale, ho rubato a Rosetta Zan I danni del ‘bravo’ insegnante. Ricordavo di aver partecipato, all’inizio della mia carriera, a un incontro di aggiornamento tenuto da lei e di essere rimasta molto colpita da quello che ricordavo come un decalogo (mentre i punti sono “solo” sette) e ho voluto riproporlo in questa sede, dopo averlo ritrovato tra gli atti di un convegno che si è svolto nel 2001. Partendo dal fatto che non esiste la ricetta per l’insegnante perfetto, con i corsisti abbiamo riflettuto su:

  • la necessità di stimolare l’attenzione degli studenti, senza dover incorrere nella frustrazione del docente;
  • la complessità del docente che non può sempre impedire la manifestazione delle proprie emozioni;
  • l’effetto Pigmalione (o effetto Rosenthal) riguardante i rischi delle profezie che si autorealizzano;
  • l’importanza della crisi e del fallimento come occasioni di crescita. In tal caso, non è potuto mancare il riferimento a Maria Colombo e a Cristiana De Filippis – e ho citato le loro interviste, sia durante la trasmissione Matematiche sul podio di Radio3 Scienza che ad opera di Raffaella Mulas – o ad Alessio Figalli durante un’intervista per l’Università di Padova;
  • la necessità di porre domande difficili proponendo delle sfide adeguate, e siamo stati aiutati a focalizzare al meglio le caratteristiche delle sfide efficaci attraverso le parole di Julio Velasco (già prima della vittoria delle azzurre alle Olimpiadi, il prof. Pietro di Martino, durante il convegno di Pistoia sulla didattica a maggio di quest’anno, aveva suggerito di cercare i numerosi video presenti su YouTube nei quali Velasco racconta le proprie strategie e regala un sacco di riflessioni che possono essere declinate in termini didattici);
  • l’importanza di non accontentarsi e di porsi domande importanti: qual è la gara per la quale stiamo preparando i nostri alunni? Se li stiamo preparando per la singola verifica, potremo lavorare come se dovessero misurarsi con la gara dei 100 m, ma se stiamo pensando a un Esame di Stato, la nostra gara sarà quella dei 10.000 m;
  • l’importanza di essere un esempio credibile, senza però esagerare nel costruire percorsi strutturati o nell’organizzare esercitazioni e lavori da far fare ai propri allievi: l’esperienza insegna che, spesso, a un minore impegno dell’insegnante corrisponde una crescita maggiore da parte degli studenti. Forse, val la pena imparare a spendere le nostre energie con saggezza.

Anche i social, volendo, offrono occasioni di approfondimento ed è così che mi sono imbattuta, scrollando il mio feed di Instagram, in un post condiviso su Twitter a fine agosto 2018 da André Sasser, all’epoca insegnante di matematica da 9 anni: «Due anni fa dicevo “Hai qualche domanda?”. L’anno scorso sono passata a “Quali domande avete?” Ha fatto la differenza. Oggi ho provato a dire “Fatemi due domande”. E lo hanno fatto! E queste domande hanno portato ad altre domande. Mi stupisce che le cose più piccole abbiano un impatto così grande!» Dopo un mese, le visualizzazioni per questo tweet erano arrivate a 14 milioni, e, a distanza di sei anni, è ancora presente e condiviso. Forse il cuore del problema è proprio questo: ci sono piccole cose, piccoli gesti, singole parole, che possono fare la differenza per i nostri studenti. 

L’identikit dello studente
Durante la seconda giornata, il mio punto di riferimento principale è stato John Hattie, direttore dell’Istituto di Ricerca sull’educazione presso l’Università di Melbourne, e il suo Visible Learning, presentato nel libro Apprendimento visibile, insegnamento efficace. La tesi principale di questo libro è che l’insegnante, per essere efficace, deve conoscere il proprio impatto sulla classe, perciò ho cominciato con un identikit particolare dello studente proposto proprio da Hattie: «Cosa significa essere un “buono studente” in questa classe?» I corsisti dovevano tentare di rispondere a questa domanda come avrebbero potuto rispondere i loro studenti, ma ho prima mostrato loro le risposte sorprendenti ottenute nelle mie classi l’anno scorso (secondo i miei ragazzi, il mio alunno ideale mi segue sui social!), dopodiché abbiamo discusso dell’illusione delle etichette che spesso usiamo con i nostri ragazzi. Per poter essere efficaci nel nostro lavoro, dobbiamo sapere cosa e come pensano gli studenti, perché ogni studente è un puzzle di motivazioni, strategie e immagini di sé. Usando come guida il libro di Hattie per descrivere le caratteristiche degli studenti, abbiamo fatto piccole deviazioni, parlando del curriculum dei fallimenti e della TED-talk di Josh Green, che ha raccontato di quando ha combattuto contro le voci nella nostra testa che gli dicevano che non era all’altezza. Josh ha sottolineato che queste voci di inadeguatezza non hanno il nostro timbro di voce, perché sono voci che «tendono a venire da poche persone selezionate nella nostra vita: un insegnante, un genitore, un bullo, un partner». (Noi insegnanti abbiamo il potere di fare la differenza sia in positivo che in negativo) Mentre stavo preparando queste lezioni, ho incontrato un ex alunno, ormai adulto, che mi ha parlato proprio di una di queste voci, un’insegnante che gli aveva detto: «Non combinerai mai nulla di buono nella tua vita!», profezia che, fortunatamente, lui è stato capace di smentire.
Sempre lasciandomi guidare dal libro di Hattie, ho proposto l’attività di valutazione dei fattori che hanno un impatto basso, medio o alto sul rendimento degli studenti, sottoponendo 16 dei 30 fattori da lui proposti, per riflettere su quali possano essere gli aspetti sui quali conviene investire, perché davvero possono fare la differenza. Ho svolto l’attività durante la lettura del libro e ho sbagliato il 50% delle risposte, ma le risposte dei corsisti non sono state molto lontane da questa percentuale. Conoscere l’impatto dei fattori di influenza permette di canalizzare le nostre energie verso ciò che può fare davvero la differenza e lasciar andare altre cose, che diventano uno spreco di tempo. Forse tutti sappiamo che la credibilità dell’insegnante agli occhi degli studenti ha un forte impatto, ma crediamo anche che la conoscenza disciplinare sia fondamentale, mentre le ricerche di Hattie ci dicono ben altro. Nel suo testo, Hattie cita Douglas Reeves, autore di più di 40 libri e più di 100 articoli sulla leadership e sull’educazione, il quale definisce la passione come l’«unica risorsa naturale rinnovabile»: quasi tutto ciò che un docente fa in classe può funzionare, ma è necessario investire parecchie energie nel rinnovo della nostra passione. 

Autocitazioni e non solo
Facendo riferimento alla mia esperienza, durante il percorso non ho potuto non fare alcune autocitazioni e ho cominciato con l’articolo scritto per il 177° Carnevale della Matematica ospitato da MaddMaths!: Inesauribile caparbietà. Nel confronto con gli studenti, non possiamo che sottolineare l’importanza della determinazione e della tenacia, messaggio che sembra essere stato colto dai miei alunni, come mostrano alcune delle loro risposte evidenziate nel post. La seconda autocitazione è stata la tesina che ho realizzato al termine del mio anno di formazione (l’ormai lontano a.s. 2004/2005): L’ansia, la matematica e la voglia di imparare, con la quale ho indagato l’impatto della matematica, in termini di emozioni e ansia, sui miei studenti di allora. Questo mi ha ricordato la TED talk di Joe Boaler, How you can be good at math, nella quale viene sottolineato come l’intelligenza sia un insieme di abilità in potenziale crescita e non, come tendiamo a pensare in cerca di un alibi, un insieme di abilità scarsamente modificabili. 

Il talento della matematica
In conclusione di percorso, ho voluto regalare un po’ di leggerezza, proponendo la vignetta allegata a questa newsletter e facendo un piccolo riferimento allo sport, in questa estate olimpica, così densa di esempi e riflessioni sul fallimento e sulla tenacia. Le Olimpiadi hanno permesso a tutti noi di riflettere anche sull’importanza del talento, ma chi ha a che fare con la matematica sa quanto il talento NON sia importante per crescere, ma sembri esserlo per gli alunni. Giusto questa settimana, una futura studentessa del nostro liceo mi ha detto: «Io e mia sorella non siamo portate per la matematica, tant’è che abbiamo scelto entrambe il classico. Quello davvero bravo in matematica è mio fratello, e infatti ha studiato al liceo scientifico!» Mi ha guardata con sospetto quando le ho detto che il talento non c’entra e spero che agli sportivi venga dato sempre più spazio quando dichiarano, come Gregorio Paltrinieri: «Non sono qui grazie al talento, sono qui grazie al sacrificio che faccio tutti i giorni» (ma io di questa citazione ho trovato traccia solo sui social…). Non posso non citare, a questo proposito, Katalin Karikò che, nella sua autobiografia Nonostante tutto. La mia vita nella scienza, scrive: «Non mi considero particolarmente intelligente. Nel corso degli anni ho conosciuto molte persone apparentemente dotate di una memoria fotografica che permetteva loro di imparare senza fatica. A uno dei miei compagni di scuola delle elementari bastava sentir dire una cosa una volta e non se la scordava più. Io no, non ho mai avuto questo dono. Ma già da piccola avevo capito una cosa fondamentale: quello che mi mancava a livello di abilità naturali, potevo compensarlo con lo sforzo. Potevo impegnarmi di più, applicarmi per un numero maggiore di ore, fare di più e farlo con maggiore attenzione.
Persino in prima elementare e in seconda elementare mi impegnavo con tutta me stessa nello studio. Cercavo di non sbagliare niente. Se commettevo un errore, ricominciavo da capo.
Studiavo.
Studiavo.
Studiavo.
E, coincidenza, a quanto pare il cervello è malleabile. Più lo esercitiamo, più lo rafforziamo. Quanto a me, mi sono esercitata a eccellere negli studi: era un esercizio attivo, come allenarsi a fare canestro per un aspirante atleta. Come un atleta, miglioravo. Man mano, per me la scuola è diventata un ambiente sempre più naturale. In terza elementare ero talmente immersa negli studi che ho iniziato a prendere sempre 5 [il massimo dei voti], e non ho più smesso.
Né, aggiungerei, ho mai smesso di esercitarmi.»

Non molto tempo fa mi sono imbattuta, sui social, in questo video di Ed Sheeran intitolato Hardwork is Ed Sheeran’s talent!, registrato durante il Jonathan Ross Show più di un anno fa. Cominciamo l’anno scolastico con questo video, per condividere una risata e una solenne verità! 

Buona matematica e buon cammino! Ci sentiamo tra TRE settimane!

Daniela

 

PS: Traduzione della vignetta:
Piperita Patty: «Sto ancora avendo problemi a scuola, Ciccio… Hai qualche suggerimento?»
Charlie Brown: «Fai i compiti… Non dormire in classe… E non provare mai a consegnare il riassunto di un libro se non l’hai letto…»
Piperita Patty: «Odio parlare con te, Ciccio»

PPS: Quello presentato in questa newsletter non è che un riassunto di quanto detto nel corso delle sei ore di lezione. Per averne la versione completa, basta scaricare gli allegati. In caso si desideri avere il file Power Point usato per la presentazione, lo si può richiedere inviando una mail a Questo indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.

Verifica di matematica, classe terza liceo scientifico
Argomento: prova parallela di fine anno sul programma di terza. Geometria analitica: parabola e circonferenza; esponenziali e logaritmi, disequazioni esponenziali e logaritmiche.

Durata: 120 minuti

Prova realizzata in collaborazione con il prof. Francesco Mognetti e la prof.ssa Asia Corna

Venerdì, 30 Agosto 2024 18:54

Debito fisica terza agosto 2024

Verifica di fisica, classe terza liceo scientifico
Argomento: termodinamica e gravitazione

Durata: 120 minuti

Domenica, 18 Agosto 2024 17:56

226 - 18 agosto 2024

Geometria
Il 29 giugno Alan Becker ha pubblicato su YouTube la sua ultima fatica: Animation vs. Geometry. Tutto comincia con uno stickman arancio che “emerge” da un segmento e va alla scoperta della geometria, passando dalla sezione aurea, il flash dorato che lo abbaglia, dal teorema di Pitagora, dalla spirale aurea che lo salva dall’incombere dei frattali. Il tentativo di racchiudere il grafo che attacca lo stickman in un tetraedro, duplicato in un ottaedro, nel cubo suo duale, nell’icosaedro e poi nel dodecaedro, esplode in una bellezza frattale che racchiude l’universo. È ancora più bello guardare questo video con il commento di Tom Crawford, matematico dell’Università di Oxford, che dal suo canale Tom Rocks Maths ha guardato per la prima volta il video realizzato da Alan Becker. Non si può non lasciarsi trascinare dall’entusiasmo di Tom e la sua preparazione ci permette di cogliere tutte le perle racchiuse nel video: Tom spiega la sezione aurea, racconta la Spugna di Menger e individua l’articolo al quale si è ispirato l’autore del video per la sua conclusione. Proprio pochi giorni fa, è uscito un video di Tom Crawford per Numberphile, il modo pigro di tagliare una pizza. Da tutti i calcoli che il matematico ci presenta in questo quasi quarto d’ora di video, potremmo dire che non è un modo così pigro di effettuare il taglio della pizza (e questa è la stessa conclusione a cui arriva il regista), ma è effettivamente interessante vedere come un po’ di geometria possa rendere una sfida questo modo assurdo di tagliare una pizza. Se parliamo di tagliare, possiamo chiudere il percorso con il paradosso dell’area scomparsa presentato da Federico Benuzzi, nel suo video Non tutto è ciò che sembra. Come sempre, Federico spiega con chiarezza il problema, che ha a che fare con la pendenza di una retta, o più semplicemente con il fatto che «La geometria è l’arte di ragionare bene su disegni fatti male», citazione di Henri Poincaré che compare nell’ultimo libro di Alberto Saracco… 

Geometrie
… dal titolo Le geometrie oltre Euclide. Alberto Saracco, docente di geometria all’Università di Parma, non ci racconta solo il percorso storico in termini divulgativi, ma ci regala preziose perle di didattica, fornendo qui e là suggerimenti e strategie, esplorando la geometria, anzi le geometrie, e i campi di applicazione sempre più vasti nei quali vengono impiegate. L’opera ha il pregio di aprire i nostri orizzonti, esplorando la bellezza; in apertura, rimanda anche agli approfondimenti disponibili sul sito della casa editrice Scienza Express, dove troviamo app, video, articoli e blog. Alla pubblicazione del libro, il blog Math is in the air, per la precisione Davide Passaro, ha intervistato Alberto Saracco: il post permette di esplorare i contenuti del libro, ma offre anche l’occasione di conoscere alcuni retroscena, oltre a parecchie informazioni sul percorso e sulle passioni dell’autore. L’ultima domanda è la richiesta di alcuni suggerimenti per i lettori più giovani, che magari stanno valutando di iscriversi ad una facoltà scientifica: «Serve una forte motivazione ed essere pronti a lavorare duramente e ad affrontare momenti di frustrazione perché le cose non saranno così semplici come alle superiori». Ritroviamo un passaggio simile anche nell’intervista live proposta da IlariaF Math: dopo una breve introduzione di Ilaria e Alberto, sono arrivate le domande degli spettatori, alle quali i due protagonisti hanno risposto con chiarezza ed entusiasmo. (Ilaria ha fatto una breve recensione del libro anche per il canale GenerazioneStem) Anche Valerio Pattaro ha trovato una buona ispirazione nel libro di Alberto Saracco e ha proposto la dimostrazione di Einstein del teorema di Pitagora, che troviamo nelle prime pagine del libro, dove è seguita da «un’ottima lezione di didattica. Prima si mostra il problema, lasciando che i discenti sbattano la testa, poi si guida verso una soluzione (lasciando fare a loro, che trovino una via anche tortuosa). Infine, solo dopo, si tira fuori la bacchetta magica della dimostrazione elegante. Che, a quel punto, sarà assorbita con molto più interesse dagli allievi.» 

Cultura matematica vs IA
Per la rubrica La scienza espressa della casa editrice Scienza Express, Alberto Saracco parla della ragionevole efficacia della matematica, facendo un confronto tra la matematica applicata e la matematica pura, e mostrando come anche quest’ultima, nel tempo, possa avere inaspettate applicazioni: è stato il caso, ad esempio, della macchina per la TAC, che nel suo funzionamento sfrutta la trasformata di Radon-Nikodym, di 53 anni prima. Saracco conclude il percorso parlando dell’astrazione come di un punto di forza per la matematica, dicendo: «Se togliamo l’astrazione alla matematica, scompare la matematica. E con essa, anche le sue applicazioni.»
Parla di applicazioni importanti anche Federico Benuzzi, in questo post di maggio intitolato, scherzosamente, D’oh!, visto che si parla del paradosso di Edward Simpson (da non confondere, appunto, con Homer Simpson, e il titolo gioca proprio su questo malinteso). Il tema è l’aggregazione dei dati, di come la matematica sia fondamentale per interpretare la realtà e di come il problema sia tornato alla ribalta proprio nel caso della pandemia di Covid. «La matematica è potente. L’ignoranza matematica pericolosa. Se vogliamo essere cittadini, sono competenze, quelle matematiche, di cui non possiamo fare a meno.»
Questa esigenza è particolarmente pressante parlando di Intelligenza Artificiale, come titola il Post: In matematica l’intelligenza artificiale non è proprio il massimo. Il problema è dato dal fatto che i numeri vengono trattati come parole e, per quanto ne sappiamo, «i chatbot di intelligenza artificiale generano il linguaggio prevedendo quale parola o frase è probabile che segua un’altra». È necessario, quindi, un addestramento specifico e una formalizzazione particolare dei problemi, perché l’IA arrivi a risolvere problemi complessi.
Anche Presh Talwalkar, dal suo canale YouTube Mind Your Decisions, ha affrontato il problema, chiedendo a ChatGPT quale fosse il numero maggiore tra 9.11 e 9.9. Dopo aver ottenuto una risposta errata, ha chiesto di eseguire la sottrazione, immaginando che questo potesse evidenziare l’errore commesso, ma ChatGPT è stato coerente con sé stesso, dando come risposta 0.21 (!). Di fronte a un risultato diverso dato dalla calcolatrice, l’IA ha accusato di errore chi ha inserito i dati o la calcolatrice stessa, e alla richiesta di quale spiegazione desse del meme che circola in rete sull’argomento, ha evidenziato come spesso la strategia di questo tipo di comunicazione sia proprio quella di enfatizzare errori inesistenti. 

Letture consigliate
Concludo con le ultime due recensioni pubblicate e due consigli dati su Instagram: Io sono Marie Curie è un romanzo di Sara Rattaro, nel quale è raccontata la vita sentimentale della grande scienziata, in prima persona. Nella finzione narrativa, tocchiamo con mano il dolore di Marie Curie una volta rimasta vedova, e la sofferenza della storia con Paul Langevin. Galileo! Un dialogo impossibile è un fumetto del 2009, che potremmo quasi definire una nuova versione dei “Discorsi e dimostrazioni matematiche intorno a due nuove scienze”, perché i sei dialoghi hanno, nella pagina a fronte, il testo estratto dagli scritti di Galilei, che spiega proprio gli argomenti trattati nei fumetti. Scacco matto tra le stelle (vincitore del Premio Strega Ragazze e Ragazzi 2021) di Alessandro Barbaglia è un racconto per bambini, che ha come protagonista un dodicenne appassionato di matematica, che si confronta con il gioco degli scacchi, con l’astrofisica e con i grandi problemi della vita. Sui social ho condiviso un esempio di cosa sia l’abitudine di Tito di tradurre tutto in matematica: «Dieci è un numero felice: completo. Essere amici significa che se certi giorni tu sei 1 allora io sarò 9, così saremo felici: completi. Se tu invece sei 8 allora io posso anche essere 2 ma la nostra somma sarà sempre un numero felice. Amici significa completarsi, non essere sempre al massimo, ma sapere che se uno dei due è giù, può contare sull’altro.»
Nonostante tutto di Katalin Karikò è l’autobiografia della biochimica vincitrice del premio Nobel per la medicina dello scorso anno: «Se ho un superpotere, è sempre stato questo: la volontà di lavorare intensamente e in maniera metodica, senza mai fermarmi». Una storia di tenacia e resistenza, una storia ordinaria e straordinaria, una storia da conoscere per imparare. Una vittoria che nessuno avrebbe potuto prevedere, un percorso incredibile che dà fiducia e speranza, ma, soprattutto, un racconto che è un insegnamento di vita. 

Buona matematica e buon cammino! Ci sentiamo tra TRE settimane!
Daniela

 

PS: Per la vignetta, ho chiesto la traduzione a chatGPT

Calvin: Oggi ho disegnato un altro disegno della mia serie “Dinosauri su razzi spaziali”, e la signorina Wormwood ha minacciato di darmi un brutto voto nel suo registro se non smettevo!
Le arti sono sotto attacco! La libertà di espressione è repressa!
Le autorità stanno cercando di silenziare qualsiasi opinione contraria alla loro!

Hobbes: Cosa non piace alla tua insegnante dei dinosauri?

Calvin: Principalmente il fatto che li disegno durante la matematica.

Domenica, 18 Agosto 2024 11:13

Galileo! Un dialogo impossibile

«Galileo! Un dialogo impossibile» è stato pubblicato da Felici Editore nel 2009, ma la raccolta di fumetti è stata realizzata per la mostra interattiva “Dialogar di scienza, sperimentando sotto la Torre”. Gli autori sono: Nadia Ioli Pierazzini, laureata in fisica a Pisa, ricercatrice del CNR dal 1970 al 2009, ideatrice della Ludoteca Scientifica e di questo percorso, avendo raccolto e organizzato il materiale storico scientifico; Francesca Riccioni, laureata in fisica a Pisa, con un master in comunicazione della scienza presso la SISSA di Trieste, è redattrice scientifica e è stata autrice dei testi di Enigma, realizzato con Tuono Pettinato come illustratore; Vittoria Balandi, laureata in lettere moderne, con la Riccioni si è occupata della sceneggiatura e dei testi; infine, il ben noto Tuono Pettinato, il cui vero nome è Andrea Paggiaro, che è stato fumettista e illustratore e ha scelto il suo pseudonimo dal racconto fantastico La biblioteca di Babele di Jorge Luis Borges.

I dialoghi sono preceduti dalla prefazione di Pietro Greco e dall’introduzione di Giuseppe Pirazzini. Pietro Greco giustifica l’utilizzo dei fumetti in questa circostanza: definisce i fumetti un’«espressione artistica che unisce poesia e disegno» e, visto che Galileo Galilei può essere ricordato anche come poeta – come mostrato dalla parte finale dell’opera, dove compare «Contro il portar la toga», un’operetta in terzine rimate, scritte nel 1589 – e il disegno costituiva l’elemento essenziale della sua comunicazione, il fumetto è la scelta che meglio rappresenta la sua opera. Giuseppe Pierazzini delinea l’opera e racconta i tre protagonisti, in qualche modo rivisitazione dei celebri Simplicio, Sagredo e Salviati dei discorsi galileiani: Simplicio è impersonato da Gastone, un personaggio che appartiene ad ogni tempo, scettico e pigro; Sagredo è impersonato da Clelia, una ragazza del XXI secolo, curiosa e portata a fare domande intelligenti; Salviati è, questo caso, interpretato da Galileo Galilei.

L’opera è costituita da sei dialoghi impossibili, dove troviamo la gravità e il piano inclinato, il galleggiamento e il termometro di Galileo, il cannocchiale e le osservazioni del cielo, il pendolo e la misura del tempo, la riflessione e la diffusione della luce, il suono e la voce. Secondo Giuseppe Pierazzini, per gustare al meglio il libro, è meglio cominciare dai fumetti e procedere poi con le citazioni tratte dalle opere di Galilei, parzialmente citate nei fumetti, e riportate integralmente nelle pagine a fronte. In questo modo, si può aggiungere a quanto letto nel fumetto, brani da «Discorsi e dimostrazioni matematiche intorno a due nuove scienze», dal «Sidereus nuncius» e dal «Dialogo sopra i due massimi sistemi del mondo», oltre a un racconto di Vincenzo Viviani e una lettera di Galilei a Lorenzo Realio. Nel corso di questi dialoghi, Galileo Galilei incontra anche personaggi che non sono suoi contemporanei: Archimede nell’episodio sul galleggiamento, e Christian Huygens, Einstein e Foucault nel dialogo dedicato al pendolo.
Il libro si conclude con la celebre citazione dalla seconda giornata del «Dialogo sopra i due massimi sistemi del mondo», dove si parla dell’esperimento mentale sotto la coperta del gran naviglio, che è di fatto la dimostrazione della rotazione della terra.

A mio modo di vedere, l’opera ha una grandissima valenza didattica, perché permette di conoscere meglio le opere originali di Galilei e, al tempo stesso, di poterlo fare con leggerezza, attraverso i dialoghi e i disegni dei fumetti, che non solo aiutano a cogliere meglio alcuni concetti senza grandi giri di parole, ma colpiscono la memoria fotografica, restando sicuramente più impressi.

Domenica, 11 Agosto 2024 15:54

Io sono Marie Curie

«Io sono Marie Curie» è stato pubblicato dalla casa editrice Sperling & Kupfer a marzo 2024. L’autrice, Sara Rattaro, è una famosa scrittrice, che ha ricevuto parecchi premi con Non volare via, Niente è come te, Splendi più che puoi, L’amore addosso, e Uomini che restano.

«Io sono Marie Curie» è un’opera di fantasia nella quale «qualsiasi riferimento a eventi storici e a persone e luoghi reali è usato in chiave fittizia»: in effetti, la ricostruzione della vicenda di Marie Curie, raccontata nel dettaglio e con chiarezza, è l’occasione per raccontare la vita amorosa della scienziata. Il romanzo è narrato in prima persona e l’io narrante è proprio Marie Curie. L’inizio è la morte di Pierre: «Un incidente, una disgrazia, un evento che non aveva niente di eccezionale in sé», ma che al tempo stesso cambiò tutto. Il romanzo ci presenta una Marie Curie più umana e ricca di passioni rispetto a come si presentava lei stessa. Nella sua autobiografia, che si compone di una sessantina di pagine, «non volle esporre nulla della sua vita intima al di là della sua adorazione di Pierre e della profondità degli affetti familiari», come ricorda Daniela Monaldi nella prefazione all’edizione della casa editrice Castelvecchi. Sempre secondo la Monaldi, sono proprio le esperienze vissute che hanno spinto la scienziata a non condividere le proprie emozioni, perciò questo romanzo si pone come un “completamento” di quanto scritto di suo pugno.
Alla morte di Pierre Curie segue un flashback che ci riporta alla fase dell’innamoramento e al matrimonio, durante il quale la scienziata dice «rividi, come in un film, l’inizio di tutto». L’inizio è a Varsavia, dove un padre, vedovo, dibattendosi tra paura e orgoglio, concede alle figlie di studiare nonostante i pericoli, fino ad arrivare al patto con Bronia che consente alle due sorelle di studiare. Il passo successivo è il racconto della prima delusione amorosa, che diventa la spinta per raggiungere Parigi, dove gli anni successivi al matrimonio sono gli anni del fervente lavoro in laboratorio, con André Debierne, Georges Sagnac, Paul Langevin e Jean Perrin. Sono anni ricchi di eventi: la nascita di Irène e poi di Ève, la scoperta del polonio e del radio, fino all’assegnazione del Nobel a Pierre Curie, in cui chi si adopera per impedire che Marie riceva il giusto riconoscimento viene vinto dalla fermezza di Pierre e dall’intervento di Gustav Mittag-Leffler.
Il lutto per la morte di Pierre Curie viene descritto in modo tale che ci sembra di poter toccare con mano la sofferenza di Marie. Nell’autobiografia leggiamo: «Mi è impossibile esprimere la profondità e il peso della crisi provocata nella mia esistenza dalla perdita di colui che era stato il mio più fedele compagno e il mio migliore amico. Schiantata dal colpo, non mi sentivo in grado di affrontare il futuro.» Sara Rattaro ha saputo prendere le poche righe dell’autobiografia e, con l’aiuto di un’immagine forte, farne qualcosa di emozionante e commovente: quello di Marie è «il pianto di un animale ferito, un verso terrificante», perché per la prima volta la scienziata si sente davvero sola. Quando leggiamo «Ogni mattina aprivo gli occhi chiedendomi perché accadesse. Perché dovevo ancora svegliarmi?» non possiamo non sentire il vuoto che ha invaso la vita di Marie, il senso di ingiustizia per quanto successo, la fatica di continuare un viaggio, familiare e professionale, che aveva visto questa coppia unita in un sodalizio colmo d’amore.
A gennaio del 1910 c’è l’alluvione della Senna e Marie e Paul Langevin si trovano bloccati in laboratorio: Sara Rattaro vede, in quell’imprevisto, l’inizio di una nuova complicità, la nascita di un sentimento. La discrezione con cui vivono la loro relazione non riesce a proteggerli dalle ire della moglie di Langevin che, con la complicità del cognato, caporedattore di un giornale, riesce a far scoppiare uno scandalo, che rischia di travolgere Marie Curie, anche professionalmente.

Sara Rattaro è riuscita a toccare con grande delicatezza temi ancora attuali: il ruolo della donna nella relazione con il marito, visto che a Marie viene assegnato un ruolo da comprimaria a prescindere – come se le ricerche che hanno portato al primo Nobel fossero state merito solo di Pierre – e l’attacco mediatico all’indomani della scoperta della relazione con Paul Langevin, tanto da portare alla richiesta di rinuncia al secondo Premio Nobel: «Immaginate di dover escludere tutti gli scienziati maschi che conducono quella che voi stesso avete definito una condotta immorale, quanti premi Nobel pensate che si potrebbero ancora assegnare?» Sara Rattaro immagina una Marie Curie appassionata e caparbia, perché, d’altra parte, non avrebbe potuto fare ciò che ha fatto senza la sua tenacia e la passione per la scienza, le restituisce la sua umanità, e, riconoscendo nella sua vicenda la grande attualità, offre ad ogni ragazza un modello da imitare. L’autenticità che caratterizza le pagine più dense di emozioni ci regala una Marie Curie non solo da ammirare ma per la quale provare empatia e simpatia.

Sabato, 03 Agosto 2024 08:02

Le geometrie oltre Euclide

«Le geometrie oltre Euclide» è stato pubblicato da Scienza Express a maggio 2024. L’autore, Alberto Saracco, è docente di geometria presso l’Università di Parma ed è un noto divulgatore: su YouTube è presente con il celebre canale che porta il suo nome, mentre su Instagram è noto come Un matematico prestato alla Disney, infine collabora con il sito MaddMaths!
Il sottotitolo «Misurare la Terra, descrivere l’Universo» delinea il percorso che ci viene proposto: a partire dalla geometria degli antichi egizi, attraverso una crescente astrazione, la storia di questa disciplina ci porta al fine della geometria e ai tempi moderni, con la descrizione dell’Universo. Nella premessa Alberto Saracco dichiara che racconterà «in maniera leggera e divulgativa la storia della geometria»: lo stile è sicuramente leggero e divulgativo, ma accanto a temi di facile lettura, ci sono argomenti più complessi e tecnici, perché, essendo un insegnante, l’autore non può rinunciare a sfidare il lettore, dato che gli piace «stimolare un lavoro maggiore da parte di chi vuole – e può – impegnarsi». Alberto Saracco non è uno storico ma un divulgatore e un geometra differenziale e complesso, perciò la prospettiva con la quale ci mostra la geometria è particolare. L’obiettivo principale resta quello di «accendere o alimentare la passione per la matematica in chi legge». Il percorso proposto è stato prima un laboratorio presso il Liceo Marconi di Parma, realizzato più di un decennio fa, poi un seminario al Festival della Scienza di Genova nel 2018, e, grazie all’incoraggiamento di Daniele Gouthier nel 2022, è diventato un libro.

La storia della geometria comincia con i tenditori di corde dell’Antico Egitto, che avevano come obiettivo quello di misurare la terra, da qui il termine geometria; i Babilonesi in qualche modo arricchiscono questa branca del sapere con delle conoscenze teoriche mentre i greci ci presentano una geometria sintetica, che permette una comprensione profonda. Attraverso vari indizi possiamo ricostruire le caratteristiche della geometria greca: il ragionamento è fondamentale, come ci ricorda il monito di Platone all’ingresso della sua scuola, la fatica è necessaria, non esistono strade alternative per evitarla, e il sapere che viene costruito non ha come obiettivo l’utilità. Con il passare del tempo, la geometria acquisisce sempre maggiore astrazione, e con la scuola pitagorica si arricchisce della dimostrazione, mentre Euclide non fa altro che sistematizzare il sapere guadagnato fino a quel momento. Con la geometria analitica si passa a una geometria più tecnica, grazie ad un’algebra che si è evoluta, da descrittiva in simbolica, grazie ai contributi di Al Khwārizmī.
Esaurita la prima parte del percorso, probabilmente nota a molti, almeno per sommi capi, si arriva al centro della narrazione: dopo il tentativo di Saccheri di liberare Euclide da ogni macchia nel 1733, dimostrando per assurdo il quinto postulato, nel 1830 nascono le geometrie non euclidee con Lobačevskij e Bolyai, che non temono gli «strilli dei beoti» come Gauss, ma non godono certo, durante la loro vita, di un grande riconoscimento. Queste risposte fuori dagli schemi portano a un fiorire di interesse attorno alla geometria e alla nascita di nuove geometrie, che, contrariamente agli obiettivi di inutilità dei greci, si rivelano estremamente utili per descrivere l’Universo. A questo fa seguito il programma di Erlangen di Klein, che nel 1872 definisce la geometria come «studio delle proprietà invarianti sotto l’azione di un certo gruppo di trasformazioni», mentre Hilbert procede con l’assiomatizzazione della geometria euclidea, esplicitando anche quegli assiomi che Euclide riteneva sottintesi. Insomma, da una geometria rigida come quella euclidea, l’astrazione ha portato a geometrie più flessibili che, avendo meno strumenti a disposizione, sono adatte per più figure: con questa varietà di geometrie «possiamo capire meglio il mondo matematico, sfruttando di volta in volta la geometria più adatta.» Le nuove geometrie permettono di fare passi avanti in diversi campi: la geometria differenziale permette di descrivere l’Universo, come ha fatto Einstein attraverso la relatività generale, la geometria proiettiva permette di capire come funziona la vista, e la topologia con i grafi descrive le connessioni neurologiche, ma non solo. In altre parole, questa geometria si rivela uno strumento indispensabile per indagare e comprendere la vita, l’Universo e tutto quanto.

Il libro è stato pensato per gli studenti delle superiori: è alla loro portata anche se, per accedere alla bellezza della matematica, è sempre necessario compiere un po’ di fatica. I box offrono un’occasione di approfondimento e un’ulteriore sfida di apprendimento, proponendo il metodo iterativo di Archita per il calcolo delle radici quadrate, i paradossi di Zenone, le sfere di Dandelin, le equazioni di secondo grado risolte con il metodo di Cartesio e le varietà. Insieme agli enunciati di alcuni teoremi e di assiomi, troviamo anche alcune dimostrazioni, perché «parlare di matematica senza mai toccare con mano una dimostrazione è ingannare il lettore»: non c’è bisogno di spaventarsi, però, perché seguendo il percorso un passo per volta, si riesce a comprendere tutto. La narrazione è arricchita dalle illustrazioni di Nicole Vascotto, che permettono di capire ancora meglio il tema, anche se non manca il monito di Poincaré: «La geometria è l’arte di ragionare bene su disegni fatti male». Il libro è ricco di matematici, alcuni più famosi di altri, ma l’autore ricorda che «difficilmente una scoperta scientifica o matematica può essere considerata la scoperta di un singolo individuo», a partire dagli Elementi fino alle scoperte più recenti.

Il lavoro di Alberto Saracco è particolarmente ricco: non è solo un percorso storico, ma un viaggio ragionato e di ragionamento nella terra delle geometrie, che ci permette di notare come il ruolo della geometria sia cambiato nel corso dei secoli e come l’apertura di nuove strade abbia aperto nuovi campi di applicazione, fornendo risposte sempre più interessanti e ampie. Un libro pensato per gli studenti delle superiori che in qualche modo sopperisce alle carenze di percorsi di studio per i quali sembra esistere solo la geometria analitica, visto che persino quella euclidea è ritenuta spesso troppo impegnativa per essere insegnata al biennio. Un libro per aprire gli orizzonti di ognuno e per permettere a tutti di cogliere fino in fondo la bellezza della geometria.

Pagina 1 di 121

© 2020 Amolamatematica di Daniela Molinari - Concept & Design AVX Srl
Note Legali e Informativa sulla privacy